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1. Introduction

Define a Goldbach number (G-number) to be an even number which can be written
as a sum of two primes. In the following we denote by N a sufficiently large integer

and let L = logN . Let further

R(k) =
∑

N<m≤2N

∑
N<l≤2N
m+l=k

Λ(l)Λ(m)

be the weighted counting function of G-numbers,

S(k) =


2
∏
p>2

(
1− 1

(p−1)2

) ∏
p|k
p>2

(
p−1
p−2

)
if k is even

0 if k is odd

be the singular series of Goldbach’s problem and

m(k) =
∑

N<m≤2N

∑
N<l≤2N
m+l=k

1.

We recall that a well-known conjecture states that as k →∞
R(k) ∼ m(k)S(k). (1)

In this paper we study the asymptotic formula for the average of R(k) over short
intervals of type [n, n+H). In the extreme case H = 1, Chudakov [1], van der

Corput [2] and Estermann [4] proved that, as N →∞, (1) holds for all k ∈ [1, N ] but
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2 ON THE ASYMPTOTIC FORMULA FOR GOLDBACH NUMBERS IN SHORT INTERVALS

O(NL−A) exceptions, for every A > 0. Moreover, the same techniques prove, for
H ≤ LD and N →∞, that∑

k∈[n,n+H)

R(k) ∼
∑

k∈[n,n+H)

m(k)S(k) (2)

holds for all n ∈ (5
2
N, 7

2
N ] but O(NL−A) exceptions, for every A,D > 0.

We recall that Montgomery-Vaughan [12] improved Chudakov-van der
Corput-Estermann’s result proving that there exists a (small) constant δ > 0 such
that |E(N)| � N1−δ, where E(N) = E ∩ [1, N ] and E is the exceptional set for

Goldbach’s problem. Montgomery-Vaughan’s technique intrinsically does not give
any information about the asymptotic formula for R(k).

On the other hand, using the circle method and Ingham-Huxley’s zero density
estimate, Perelli [14] proved that (2) holds as n→∞ uniformly for H ≥ n1/6+ε.

Our aim here is to show, using the circle method, that the asymptotic formula (2)
holds for almost all n ∈ (5

2
N, 7

2
N ], uniformly for LD ≤ H ≤ N1/6+ε, for all D > 0.

Our result is

Theorem. Let D, ε > 0 be arbitrary constants and LD ≤ H ≤ N1/6+ε. Then, as
N →∞, (2) holds for all n ∈ (5

2
N, 7

2
N ] but O(NL42+εH−2) exceptions.

In fact, following the proof of the Theorem, it is easy to see that we have O(NLf(θ)

H−2) exceptions, where

H = N θ and f(θ) =
24− 18θ

1− 3θ
+ ε.

A direct computation shows that f(θ) is an increasing function and hence the
exponent 42 in the log-factor of the Theorem follows taking θ = 1/6 + ε.

We observe that our result, for θ = 1/6 + ε, proves only that the number of
exceptions for (2) is O(N2/3−ε) while, from Perelli’s [14] result, we know that there

are no exceptions.
We recall that Mikawa, see Lemma 4 of [10], proved a slightly weaker, in the

log-factor, result without using the circle method. We finally recall that, under the
assumption of the Riemann Hypothesis (RH), (2) holds uniformly for

H ≥ ∞(log2 n), where f =∞(g) means g = o(f), and that, assuming further the
Montgomery pair correlation conjecture, (2) holds uniformly for H ≥ ∞(log n).

Acknowledgments. We wish to thank Prof. A.Perelli for some useful discussions.

2. Outline of the method

Let

Q =
H

Lε
, T =

N

Q
L2+ε and KH(n) =

∑
k∈[n,n+H)

e(−kα),
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where e(x) = exp(2πix). Let further β+ iγ denote the generic non-trivial zero of ζ(s),

S(α) =
∑

N<m≤2N

Λ(m)e(mα), T (α) =
∑

N<m≤2N

e(mα),

Tρ(α) =
∑

N<m≤2N

aρ(m)e(mα), aρ(m) =

∫ m+1

m

tρ−1dt.

Given an interval I = [a, b] ⊂ [1/2, 1] we define

Σb(α) =
∑
|γ|≤T
β∈I

Tρ(α), Σg(α) =
∑
|γ|≤T
β 6∈I

Tρ(α) +
∑
|γ|>T

Tρ(α) +R(α)

where R(α) is defined by difference in the approximation

S(α) = T (α)− Σg(α)− Σb(α). (3)

Subdivide now (−1
2
, 1
2
) into O(logQ) subintervals of the following form

A0 = (− 1

Q
,

1

Q
) , Aj = (− 1

2j
,− 1

2j+1
] ∪ [

1

2j+1
,

1

2j
)

for j ∈ [1, K], where K = [logQ/ log 2]. Hence we have∑
k∈[n,n+H)

R(k) =

∫ 1/2

−1/2
S(α)2KH(α)dα =

∫ 1/Q

−1/Q
S(α)2KH(α)dα

+
K∑
j=1

∫
Aj

S(α)2KH(α)dα = Σ1 + Σ2,

(4)

say. We will prove that

Σ1 =
∑

k∈[n,n+H)

m(k)S(k) +

∫ 1/Q

−1/Q
Σb(α)2KH(α)dα + o(HN), (5)

∑
5
2
N<n≤ 7

2
N

|
∫ 1/Q

−1/Q
Σb(α)2KH(α)dα|2 � N3Lf(θ), (6)

and

Σ2 = o(HN). (7)

We will need also that∑
k∈[n,n+H)

m(k)S(k)� HN (8)

which can be obtained immediately using S(2k)� 1. Since ε > 0 is arbitrarily
small, our Theorem follows at once from (4)-(8).
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3. Preliminary Lemmas

In the following we will need two auxiliary lemmas.

Lemma 1. Let N(σ, T ) be the number of zeros ρ = β + iγ of the Riemann
zeta-function such that |γ| ≤ T and β ≥ σ, and let I ⊂ [1/2, 1] be an interval. Then∫ 2N

N

|
∑
|γ|≤T
β∈I

xρ
(1 +Q/x)ρ − 1

ρ
|2dx� Q2L4 max

σ∈I
N2σ−1N(σ,

N

Q
).

The proof of Lemma 1 is standard. It can be obtained using, e.g., Saffari-Vaughan’s
[15] technique and hence we omit it.

Lemma 2. We have, for |γ| � N and N sufficiently large, that

Tρ(α)� Nβ|γ|−1/2.

Proof. We follow the line of Perelli [13] and hence we give only a brief sketch of the
proof. Since

aρ(m) =

∫ m+1

m

tρ−1dt =
mρ

ρ
((1 +

1

m
)ρ − 1),

and, for P sufficiently large but fixed,

(1 +
1

m
)ρ − 1 =

P∑
j=1

ρ(ρ− 1) · · · (ρ− j + 1)

j!

( 1

m

)j
+O(N−11),

we can write

Tρ(α) = Tρ,1(α) +
P∑
j=2

(ρ− 1)(ρ− 2) · · · (ρ− j + 1)

j!
Tρ,j(α) +O(Nβ−10), (9)

where

Tρ,j(α) =
∑

N<m≤2N

mρ−je(mα).

From Abel’s inequality we have

|Tρ,j(α)| � Nβ−j max
N≤y≤2N

|
∑

N≤m≤y

e2πifρ(α)|,

where fρ(α) = γ
2π

log n+ αn. We can assume that the maximum is attained at
Y = 2N , and so, using van der Corput’s second derivative method, see Theorem 2.2

of Graham-Kolesnik [5], we get

Tρ,j(α)� Nβ−j+1|γ|−1/2. (10)

Lemma 2 now follows inserting (10) in (9). �
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4. Estimation of Σ2

Letting S(α) = T (α) +R1(α), where R1(α) is defined by difference, and using

KH(α)� min(H,
1

|α|
) for every α ∈ [−1

2
,
1

2
], (11)

we have

Σ2 �
K∑
j=1

( ∫
Aj

|T (α)|2|KH(α)|dα +

∫
Aj

|R1(α)|2|KH(α)|dα
)

�
K∑
j=1

2j
( ∫

Aj

|T (α)|2dα +

∫
Aj

|R1(α)|2dα
)

= Σ2,1 + Σ2,2,

(12)

say. Using

T (α)� min(N,
1

|α|
) for every α ∈ [−1

2
,
1

2
], (13)

we obtain

Σ2,1 �
K∑
j=1

4j � 4K � Q2 = o(HN). (14)

By Gallagher’s lemma, see, e.g., Lemma 1.9 of Montgomery [11], and the
Brun-Titchmarsh theorem we get

Σ2,2 �
K∑
j=1

2j
∫ 2−j

−2−j
|
∑

N<m≤2N

(Λ(m)− 1)e(mα)|2dα�
K∑
j=1

2−j(J(N, 2j) + L223j),
(15)

where J(N, h) is the Selberg integral. Inserting the estimate J(N, h)� h2N + hNL
for all h ≥ 1, see the Lemma in Languasco [7], in (15) we have

Σ2,2 �
K∑
j=1

2−j
(
23jL2 + 22jN + 2jNL

)
� L2Q2 +NQ+NL logQ = o(HN).

(16)

Hence, inserting (14) and (16) in (12), we finally have that (7) holds.

5. Estimation of Σ1

Inserting the identity

S(α)2 =
(
2S(α)T (α)− T (α)2

)
− Σg(α)2 − 2T (α)Σg(α) + 2S(α)Σg(α) + Σb(α)2

into the definition of Σ1, we obtain

Σ1 = Σ1,1 − Σ1,2 − Σ1,3 + Σ1,4 +

∫ 1/Q

−1/Q
Σb(α)2KH(α)dα, (17)

where

Σ1,1 =

∫ 1/Q

−1/Q
(2S(α)T (α)− T (α)2)KH(α)dα,
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Σ1,2 =

∫ 1/Q

−1/Q
Σg(α)2KH(α)dα,

Σ1,3 =

∫ 1/Q

−1/Q
2T (α)Σg(α)KH(α)dα

and

Σ1,4 =

∫ 1/Q

−1/Q
2S(α)Σg(α)KH(α)dα.

In this section we will prove

Σ1,1 =
∑

k∈[n,n+H)

m(k)S(k) + o(HN) (18)

and

Σ1,2 = o(HN), (19)

while the estimation of the mean-square of
∫ 1/Q

−1/Q Σb(α)2KH(α)dα will be performed

in the next section.
Assuming that (19) holds, the contribution of Σ1,3 and Σ1,4 can be estimated using

the Cauchy-Schwarz inequality and∫ 1/Q

−1/Q
|S(α)|2dα� N, (20)

which can be proved using the same argument in the proof of Corollary 3 of
Languasco-Perelli [9]. We obtain

Σ1,3 = o(HN) and Σ1,4 = o(HN). (21)

Hence, by (17)-(19) and (21), we have that (5) holds.
Now we proceed to evaluate Σ1,1 and Σ1,2.

Contribution of Σ1,1

Squaring out we obtain∫ 1/2

−1/2
T (α)2KH(α)dα =

∑
k∈[n,n+H)

m(k)

and hence, using (11) and (13), we get∫ 1/Q

−1/Q
T (α)2KH(α)dα =

∫ 1/2

−1/2
T (α)2KH(α)dα +O(Q2) =

∑
k∈[n,n+H)

m(k) + o(HN).
(22)

Using the Prime Number Theorem, the Cauchy-Schwarz inequality and arguing
analogously, we can write∫ 1/Q

−1/Q
S(α)T (α)KH(α)dα =

∑
k∈[n,n+H)

m′(k) + o(HN), (23)
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where

m′(k) =
∑

N<m≤2N

Λ(m)
∑

N<h≤2N
m+h=k

1.

Again by the Prime Number Theorem, we get∑
k∈[n,n+H)

m(k) =
∑

k∈[n,n+H)

m′(k) + o(HN) (24)

and hence, by (22)-(24), we have

Σ1,1 =
∑

k∈[n,n+H)

m(k) + o(HN). (25)

Using the Theorem of Languasco [8] and by partial summation, it is easy to prove∑
k∈[n,n+H)

m(k) =
∑

k∈[n,n+H)

m(k)S(k) + o(HN) for H ≥ L2/3+ε. (26)

Now (18) follows from (25) and (26).

Contribution of Σ1,2

Since

Σg(α)2 � |
∑
|γ|≤T
β 6∈I

Tρ(α)|2 + |
∑
|γ|>T

Tρ(α)|2 + |R(α)|2,

we have

Σ1,2 � A1 + A2 + A3, (27)

where

A1 =

∫ 1/Q

−1/Q
|
∑
|γ|≤T
β 6∈I

Tρ(α)|2|KH(α)|dα,

A2 =

∫ 1/Q

−1/Q
|
∑
|γ|>T

Tρ(α)|2|KH(α)|dα

and

A3 =

∫ 1/Q

−1/Q
|R(α)|2|KH(α)|dα.

Using (11) and Gallagher’s lemma, we obtain

A1 �
H

Q2

( ∫ 2N

N

|
∑

x<m<x+Q

∑
|γ|≤T
β 6∈I

aρ(m)|2dx+

∫ N

N−Q
|

∑
N<m<x+Q

∑
|γ|≤T
β 6∈I

aρ(m)|2dx

+

∫ 2N

2N−Q
|
∑

x<m≤2N

∑
|γ|≤T
β 6∈I

aρ(m)|2dx
)

= A1,1 + A1,2 + A1,3, (28)
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say. Interchanging summation and integration in A1,1, we get

A1,1 �
H

Q2

∫ 2N

N

|
∫ [x+Q]

[x]+1

∑
|γ|≤T
β 6∈I

tρ−1dt|2dx

� H

Q2

∫ 2N

N

∣∣( ∫ x+Q

x

−
∫ [x]+1

x

−
∫ x+Q

[x+Q]

) ∑
|γ|≤T
β 6∈I

tρ−1dt
∣∣2dx. (29)

To bound the contribution of the integral on [x, [x] + 1] in (29), we argue as follows.
Interchanging summation and integration, we get∫ 2N

N

∣∣ ∫ [x]+1

x

∑
|γ|≤T
β 6∈I

tρ−1dt
∣∣2dx� ∑

N<n≤2N

∫ n+1

n

|
∑
|γ|≤T
β 6∈I

xρ
((n+ 1)/x)ρ − 1

ρ
|2dx

and then, using ((n+1)/x)ρ−1
ρ

� min( 1
N
, 1
|γ|), we have∫ 2N

N

∣∣ ∫ [x]+1

x

∑
|γ|≤T
β 6∈I

tρ−1dt
∣∣2dx� L4 max

σ 6∈I
N2σ−1N(σ,

N

Q
). (30)

To estimate the integral on [[x+Q], x+Q] in (29) we proceed analogously and hence
we get∫ 2N

N

∣∣ ∫ x+Q

[x+Q]

∑
|γ|≤T
β 6∈I

tρ−1dt
∣∣2dx� L4 max

σ 6∈I
N2σ−1N(σ,

N

Q
). (31)

Now we treat the integral on [x, x+Q] in (29). Proceeding as above we obtain∫ 2N

N

∣∣ ∫ x+Q

x

∑
|γ|≤T
β 6∈I

tρ−1dt
∣∣2dx� ∫ 2N

N

∣∣ ∑
|γ|≤T
β 6∈I

xρ
(1 +Q/x)ρ − 1

ρ

∣∣2dx
� Q2L4 max

σ 6∈I
N2σ−1N(σ,

N

Q
),

(32)

where the last inequality follows by Lemma 1.
Choosing, in the definition of the interval I,

a =
1 + 3θ

2
− l logL

L
and b =

5− 3θ

6
+ k

logL

L
, (33)

where l > 27(1−θ)
2(1−3θ) and k is a sufficiently large constant, we have, using

Ingham-Huxley’s density estimate, see, e.g., Ivić [6], and (29)-(33), that

A1,1 � HL4 max
σ 6∈I

N2σ−1N(σ,
N

Q
) = o(HN). (34)
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Interchanging summation and integration in A1,2, we get

A1,2 �
H

Q2

∫ N

N−Q
|
∑
|γ|≤T
β 6∈I

xρcρ,Q|2dx,

where cρ,Q = (( [x+Q]
x

)ρ − (N
x

)ρ)/ρ. Splitting the summation according to |γ| ≤ N/Q

and N/Q ≤ |γ| ≤ T and using cρ,Q � min(Q
N
, 1
|γ|), we obtain

A1,2 �
H

Q2

(Q2

N2

∫ N

N−Q
|
∑
|γ|≤N/Q
β 6∈I

xβ|2dx+

∫ N

N−Q
|

∑
N/Q≤|γ|≤T

β 6∈I

xβ

|γ|
|2dx

)

� HQL4 max
σ 6∈I

N2σ−2N(σ,
N

Q
)2.

Using Ingham-Huxley’s density estimate, we see that the maximum is attained at
σ = 1/2 and hence we can write

A1,2 � HQL4N−1(
N

Q
)2L2 =

HNL6

Q
= o(HN). (35)

A1,3 can be bounded following the lines of the estimation of A1,2. We have

A1,3 = o(HN). (36)

Inserting (34) and (35)-(36) in (28) we obtain

A1 = o(HN). (37)

Now we proceed to estimate A2. By (11) we get

A2 � H

∫ 1/Q

−1/Q
|
∑

N<m≤2N

∑
|γ|>T

aρ(m)e(mα)|2dα. (38)

Using (38), Gallagher’s lemma and the explicit formula for ψ(x), see equations
(9)-(10) in ch. 17 of Davenport [3], we have

A2 �
H

Q2

∫ 2N

N−Q

N2L4

T 2
dx� HN3

Q2T 2
L4 = o(HN). (39)

To bound A3 we use (11), Gallagher’s lemma and the explicit formula for ψ(x) , see
equation (1) in ch. 17 of Davenport [3]. Hence

A3 �
H

Q2

∫ 2N

N−Q
|
∑

x<m<x+Q
N<m≤2N

(Λ(m)− 1 +
∑
ρ

aρ(m))|2dx

� H

Q2

∫ 2N

N−Q
L4dx� HNL4

Q2
= o(HN).

(40)

Now (19) follows inserting (37) and (39)-(40) in (27).
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6. Mean-square estimate of Σb(α)2

Squaring out and using the definition of Σb(α), we get∑
5
2
N<n≤ 7

2
N

|
∫ 1/Q

−1/Q
Σb(α)2KH(α)dα|2

=
∑

5
2
N<n≤ 7

2
N

∫ 1/Q

−1/Q
(
∑
|γ|≤T
β∈I

Tρ(α))2KH(α)dα

∫ 1/Q

−1/Q
(
∑
|γ′|≤T
β′∈I

Tρ′(δ))
2KH(δ)dδ

�
∫ 1/Q

−1/Q
|
∑
|γ|≤T
β∈I

Tρ(α)|2
∫ 1/Q

−1/Q
|
∑
|γ′|≤T
β′∈I

Tρ′(δ)|2|
∑

5
2
N<n≤ 7

2
N

KH(α)KH(δ)|dδdα = Σ3,

(41)

say. Since KH(α) = sinπHα
sinπα

e(1−H
2
α)e(−nα), we have

Σ3 � H2

∫ 1/Q

−1/Q
|
∑
|γ|≤T
β∈I

Tρ(α)|2
( ∫ 1/Q

−1/Q
|
∑
|γ′|≤T
β′∈I

Tρ′(δ)|2KN(α− δ)dδ
)
dα, (42)

where KN(t) =
∑

5
2
N<n≤ 7

2
N

e(−nt)� min(N, 1
|t|).

Using the latest estimate and (42), we obtain

Σ3 � H2N

∫ 1/Q

−1/Q
|
∑
|γ|≤T
β∈I

Tρ(α)|2
( ∫

(− 1
Q
, 1
Q
)∩(α− 1

N
,α+ 1

N
)

|
∑
|γ′|≤T
β′∈I

Tρ′(δ)|2dδ
)
dα

+H2

∫ 1/Q

−1/Q
|
∑
|γ|≤T
β∈I

Tρ(α)|2
( ∫

(− 1
Q
, 1
Q
)\(α− 1

N
,α+ 1

N
)

|
∑
|γ′|≤T
β′∈I

Tρ′(δ)|2
1

|α− δ|
dδ
)
dα

= Σ3,1 + Σ3,2,

(43)

say. Using (3) and arguing as in section 6, we get∫ 1/Q

−1/Q
|
∑
|γ|≤T
β∈I

Tρ(α)|2dα�
∫ 1/Q

−1/Q
|S(α)|2dα +O(N)� N, (44)

where the latest inequality follows from (20).
Now, inserting (44) in Σ3,1, we have

Σ3,1 � H2N2
(

max
α∈(−1/Q,1/Q)

∫
(− 1

Q
, 1
Q
)∩(α− 1

N
,α+ 1

N
)

|
∑
|γ′|≤T
β′∈I

Tρ′(δ)|2dδ
)

� H2N
(

max
δ∈(−1/Q,1/Q)

|
∑
|γ|≤T
β∈I

Tρ().|
2
)
.

(45)
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To bound Σ3,2, we argue as for Σ3,1 and we can prove that the bound in (45) holds,
with an extra L factor, for Σ3,2 too. Finally, by (41), (43), (45) and the above

remark, we obtain∑
5
2
N≤n≤ 7

2
N

|
∫ 1/Q

−1/Q
(
∑
|γ|≤T
β∈I

Tρ(α))2KH(α)dα|2 � H2NL
(

max
δ∈(−1/Q,1/Q)

|
∑
|γ|≤T
β∈I

Tρ(δ)|2
)
.
(46)

Using Lemma 2 and a standard argument to bound sums over zeros of ζ(s), we have∑
|γ|≤T
β∈I

Tρ(δ)� L2
(

max
σ∈I
σ<7/9

Nσ max
|t|≤T

N(σ, t)|t|−1/2 + max
σ∈I
σ≥7/9

Nσ max
|t|≤T

N(σ, t)|t|−1/2
)

� L2
(

max
σ∈I
σ<7/9

NσN(σ, T )T−1/2 + max
σ∈I
σ≥7/9

Nσ
)
. (47)

By Ingham-Huxley’s density estimate, we have that the first maximum is attained at
σ = a and the second at σ = b. Hence, by (46) and (47), we see that (6) holds.
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