On the asymptotic formula for Goldbach numbers in short intervals

Availability:
This version is available at: 11583/1397857 since:

Publisher:
Akadémiai Kiadó

Published
DOI:10.1556/SScMath.36.2000.1-2.14

Terms of use:
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)
ON THE ASYMPTOTIC FORMULA FOR GOLDBACH NUMBERS IN SHORT INTERVALS

by

D. BAZZANELLA and A. LANGUASCO

1. INTRODUCTION

Define a Goldbach number (G-number) to be an even number which can be written as a sum of two primes. In the following we denote by \(N \) a sufficiently large integer and let \(L = \log N \). Let further

\[
R(k) = \sum_{N < m \leq 2N} \sum_{N < l \leq 2N} \Lambda(l)\Lambda(m)
\]

be the weighted counting function of G-numbers,

\[
\mathcal{S}(k) = \begin{cases}
2 \prod_{p > 2} \left(1 - \frac{1}{(p-1)^2}\right) \prod_{p \mid k} \left(\frac{p-1}{p-2}\right) & \text{if } k \text{ is even} \\
0 & \text{if } k \text{ is odd}
\end{cases}
\]

be the singular series of Goldbach’s problem and

\[
m(k) = \sum_{N < m \leq 2N} \sum_{N < l \leq 2N} 1.
\]

We recall that a well-known conjecture states that as \(k \to \infty \)

\[
R(k) \sim m(k)\mathcal{S}(k).
\]

In this paper we study the asymptotic formula for the average of \(R(k) \) over short intervals of type \([n, n + H]\). In the extreme case \(H = 1 \), Chudakov [1], van der Corput [2] and Estermann [4] proved that, as \(N \to \infty \), (1) holds for all \(k \in [1, N] \) but

\footnotetext{1}{This version does not contain journal formatting and may contain minor changes with respect to the published version. The final publication is available at http://dx.doi.org/10.1556/SScMath.36.2000.1-2.14. The present version is accessible on PORTO, the Open Access Repository of Politecnico di Torino (http://porto.polito.it), in compliance with the Publisher’s copyright policy as reported in the SHERPA-ROME0 website: http://www.sherpa.ac.uk/romeo/issn/0081-6906/}
\[O(NL^{-A}) \text{ exceptions, for every } A > 0. \] Moreover, the same techniques prove, for \(H \leq L^D \) and \(N \to \infty \), that
\[
\sum_{k \in [n,n+H]} R(k) \sim \sum_{k \in [n,n+H]} m(k) \mathcal{S}(k)
\]
holds for all \(n \in \left(\frac{5}{2}N, \frac{7}{2}N \right] \) but \(O(NL^{-A}) \) exceptions, for every \(A, D > 0 \).

We recall that Montgomery-Vaughan [12] improved Chudakov-van der Corput-Estermann’s result proving that there exists a (small) constant \(\delta > 0 \) such that \(|E(N)| \ll N^{1-\delta} \), where \(E(N) = E \cap [1, N] \) and \(E \) is the exceptional set for Goldbach’s problem. Montgomery-Vaughan’s technique intrinsically does not give any information about the asymptotic formula for \(R(k) \).

On the other hand, using the circle method and Ingham-Huxley’s zero density estimate, Perelli [14] proved that (2) holds as \(n \to \infty \) uniformly for \(H \geq n^{1/6+\varepsilon} \).

Our aim here is to show, using the circle method, that the asymptotic formula (2) holds for almost all \(n \in (\frac{5}{2}N, \frac{7}{2}N] \), uniformly for \(L^D \leq H \leq N^{1/6+\varepsilon} \), for all \(D > 0 \).

Our result is

Theorem. Let \(D, \varepsilon > 0 \) be arbitrary constants and \(L^D \leq H \leq N^{1/6+\varepsilon} \). Then, as \(N \to \infty \), (2) holds for all \(n \in (\frac{5}{2}N, \frac{7}{2}N] \) but \(O(NL^{42+\varepsilon}H^{-2}) \) exceptions.

In fact, following the proof of the Theorem, it is easy to see that we have \(O(NL^{f(\theta)}H^{-2}) \) exceptions, where
\[
H = N^\theta \quad \text{and} \quad f(\theta) = \frac{24 - 18\theta}{1 - 3\theta} + \varepsilon.
\]

A direct computation shows that \(f(\theta) \) is an increasing function and hence the exponent 42 in the log-factor of the Theorem follows taking \(\theta = 1/6 + \varepsilon \).

We observe that our result, for \(\theta = 1/6 + \varepsilon \), proves only that the number of exceptions for (2) is \(O(N^{2/3-\varepsilon}) \) while, from Perelli’s [14] result, we know that there are no exceptions.

We recall that Mikawa, see Lemma 4 of [10], proved a slightly weaker, in the log-factor, result without using the circle method. We finally recall that, under the assumption of the Riemann Hypothesis (RH), (2) holds uniformly for \(H \geq \infty (\log^2 n) \), where \(f = \infty (g) \) means \(g = o(f) \), and that, assuming further the Montgomery pair correlation conjecture, (2) holds uniformly for \(H \geq \infty (\log n) \).

Acknowledgments. We wish to thank Prof. A.Perelli for some useful discussions.

2. **Outline of the method**

Let
\[
Q = \frac{H}{L^\varepsilon}, \quad T = \frac{N}{Q}L^{2+\varepsilon} \quad \text{and} \quad K_H(n) = \sum_{k \in [n,n+H]} e(-k\alpha),
\]
ON THE ASYMMETRIC FORMULA FOR GOLDBACH NUMBERS IN SHORT INTERVALS

where \(e(x) = \exp(2\pi i x) \). Let further \(\beta + i\gamma \) denote the generic non-trivial zero of \(\zeta(s) \),

\[
S(\alpha) = \sum_{N < m \leq 2N} \Lambda(m) e(m\alpha), \quad T(\alpha) = \sum_{N < m \leq 2N} e(m\alpha),
\]

\[
T_\rho(\alpha) = \sum_{N < m \leq 2N} a_\rho(m) e(m\alpha), \quad a_\rho(m) = \int_m^{m+1} t^{\rho-1} dt.
\]

Given an interval \(I = [a, b] \subset [1/2, 1] \) we define

\[
\Sigma_b(\alpha) = \sum_{|\gamma| \leq T \notin I} T_\rho(\alpha), \quad \Sigma_g(\alpha) = \sum_{|\gamma| \leq T} T_\rho(\alpha) + \sum_{|\gamma| > T} T_\rho(\alpha) + R(\alpha)
\]

where \(R(\alpha) \) is defined by difference in the approximation

\[
S(\alpha) = T(\alpha) - \Sigma_g(\alpha) - \Sigma_b(\alpha).
\]

Subdivide now \((-1/2, 1/2)\) into \(O(\log Q) \) subintervals of the following form

\[
A_0 = \left(-\frac{1}{Q}, \frac{1}{Q}\right), \quad A_j = \left(-\frac{1}{2j}, -\frac{1}{2j+1}\right] \cup \left[\frac{1}{2j+1}, \frac{1}{2j}\right)
\]

for \(j \in [1, K] \), where \(K = \lceil \log Q / \log 2 \rceil \). Hence we have

\[
\sum_{k \in [n, n+H]} R(k) = \int_{-1/2}^{1/2} S(\alpha)^2 K_H(\alpha) d\alpha = \int_{-1/Q}^{1/Q} S(\alpha)^2 K_H(\alpha) d\alpha
\]

\[
+ \sum_{j=1}^{K} \int_{A_j} S(\alpha)^2 K_H(\alpha) d\alpha = \Sigma_1 + \Sigma_2,
\]

say. We will prove that

\[
\Sigma_1 = \sum_{k \in [n, n+H]} m(k) \mathcal{G}(k) + \int_{-1/Q}^{1/Q} \Sigma_b(\alpha)^2 K_H(\alpha) d\alpha + o(HN),
\]

\[
\sum_{\frac{1}{2} N < n \leq \frac{3}{4} N} \left| \int_{-1/Q}^{1/Q} \Sigma_b(\alpha)^2 K_H(\alpha) d\alpha \right|^2 \ll N^3 L'(\theta),
\]

and

\[
\Sigma_2 = o(HN).
\]

We will need also that

\[
\sum_{k \in [n, n+H]} m(k) \mathcal{G}(k) \gg HN
\]

which can be obtained immediately using \(\mathcal{G}(2k) \gg 1 \). Since \(\varepsilon > 0 \) is arbitrarily small, our Theorem follows at once from (4)-(8).
3. Preliminary Lemmas

In the following we will need two auxiliary lemmas.

Lemma 1. Let \(N(\sigma, T) \) be the number of zeros \(\rho = \beta + i\gamma \) of the Riemann zeta-function such that \(|\gamma| \leq T \) and \(\beta \geq \sigma \), and let \(I \subset [1/2, 1] \) be an interval. Then

\[
\int_N^{2N} \left| \sum_{|\rho| \leq T, \beta \in I} \frac{x^\rho (1 + Q/x)^\rho - 1}{\rho} \right|^2 dx \ll Q^2 L^4 \max_{\sigma \in I} N^{2\sigma - 1} N(\sigma, \frac{N}{Q}).
\]

The proof of Lemma 1 is standard. It can be obtained using, e.g., Saffari-Vaughan’s [15] technique and hence we omit it.

Lemma 2. We have, for \(|\gamma| \ll N \) and \(N \) sufficiently large, that

\[T_\rho(\alpha) \ll N^\beta |\gamma|^{-1/2}. \]

Proof. We follow the line of Perelli [13] and hence we give only a brief sketch of the proof. Since

\[
a_\rho(m) = \int_m^{m+1} t^{\rho-1} dt = \frac{m^\rho}{\rho} ((1 + \frac{1}{m})^\rho - 1),
\]

and, for \(P \) sufficiently large but fixed,

\[
(1 + \frac{1}{m})^\rho - 1 = \sum_{j=1}^P \frac{\rho(\rho - 1) \cdots (\rho - j + 1)}{j!} \left(\frac{1}{m} \right)^j + O(N^{-11}),
\]

we can write

\[T_\rho(\alpha) = T_{\rho,1}(\alpha) + \sum_{j=2}^P \frac{(\rho - 1)(\rho - 2) \cdots (\rho - j + 1)}{j!} T_{\rho,j}(\alpha) + O(N^{\beta - 10}), \] (9)

where

\[T_{\rho,j}(\alpha) = \sum_{N < m \leq 2N} m^{\rho-j} e(m\alpha). \]

From Abel’s inequality we have

\[
|T_{\rho,j}(\alpha)| \ll N^{\beta - j} \max_{N \leq y \leq 2N} \left| \sum_{N \leq m \leq y} e^{2\pi i f_\rho(m) \alpha} \right|,
\]

where \(f_\rho(\alpha) = \frac{1}{2\pi} \log n + \alpha n \). We can assume that the maximum is attained at \(Y = 2N \), and so, using van der Corput’s second derivative method, see Theorem 2.2 of Graham-Kolesnik [5], we get

\[T_{\rho,j}(\alpha) \ll N^{\beta - j + 1} |\gamma|^{-1/2}. \] (10)

Lemma 2 now follows inserting (10) in (9).
ON THE ASYMPTOTIC FORMULA FOR GOLDBACH NUMBERS IN SHORT INTERVALS

4. Estimation of Σ_2

Letting $S(\alpha) = T(\alpha) + R_1(\alpha)$, where $R_1(\alpha)$ is defined by difference, and using

$$K_H(\alpha) \ll \min(H, \frac{1}{|\alpha|}) \quad \text{for every} \quad \alpha \in [-\frac{1}{2}, \frac{1}{2}],$$

we have

$$\Sigma_2 \ll \sum_{j=1}^{K} \left(\int_{A_j} |T(\alpha)|^2 |K_H(\alpha)| d\alpha + \int_{A_j} |R_1(\alpha)|^2 |K_H(\alpha)| d\alpha \right) \quad (11)$$

$$\ll \sum_{j=1}^{K} 2^j \left(\int_{A_j} |T(\alpha)|^2 d\alpha + \int_{A_j} |R_1(\alpha)|^2 d\alpha \right) = \Sigma_{2,1} + \Sigma_{2,2},$$

say. Using

$$T(\alpha) \ll \min(N, \frac{1}{|\alpha|}) \quad \text{for every} \quad \alpha \in [-\frac{1}{2}, \frac{1}{2}],$$

we obtain

$$\Sigma_{2,1} \ll \sum_{j=1}^{K} 4^j \ll 4^K \ll Q^2 = o(HN). \quad (12)$$

By Gallagher’s lemma, see, e.g., Lemma 1.9 of Montgomery [11], and the Brun-Titchmarsh theorem we get

$$\Sigma_{2,2} \ll \sum_{j=1}^{K} 2^j \int_{-2^{-j}}^{2^{-j}} \left(\sum_{N < m \leq 2N} (\Lambda(m) - 1)e(m\alpha) \right)^2 d\alpha \ll \sum_{j=1}^{K} 2^{-j} (J(N, 2^j) + L^2 2^{3j}), \quad (13)$$

where $J(N, h)$ is the Selberg integral. Inserting the estimate $J(N, h) \ll h^2 N + hNL$ for all $h \geq 1$, see the Lemma in Languasco [7], in (15) we have

$$\Sigma_{2,2} \ll \sum_{j=1}^{K} 2^{-j} (2^{3j} L^2 + 2^{2j} N + 2^{j} NL) \ll L^2 Q^2 + NQ + NL \log Q = o(HN). \quad (14)$$

Hence, inserting (14) and (16) in (12), we finally have that (7) holds.

5. Estimation of Σ_1

Inserting the identity

$$S(\alpha)^2 = (2S(\alpha)T(\alpha) - T(\alpha)^2) - \Sigma_g(\alpha)^2 - 2T(\alpha)\Sigma_g(\alpha) + 2S(\alpha)\Sigma_g(\alpha) + \Sigma_b(\alpha)^2$$

into the definition of Σ_1, we obtain

$$\Sigma_1 = \Sigma_{1,1} - \Sigma_{1,2} - \Sigma_{1,3} + \Sigma_{1,4} + \int_{-1/Q}^{1/Q} \Sigma_b(\alpha)^2 K_H(\alpha) d\alpha, \quad (17)$$

where

$$\Sigma_{1,1} = \int_{-1/Q}^{1/Q} (2S(\alpha)T(\alpha) - T(\alpha)^2) K_H(\alpha) d\alpha,$$
\[\Sigma_{1,2} = \int_{-1/Q}^{1/Q} \sigma_0(\alpha)^2 K_H(\alpha) d\alpha, \]

\[\Sigma_{1,3} = \int_{-1/Q}^{1/Q} 2T(\alpha) \sigma_0(\alpha) K_H(\alpha) d\alpha \quad \text{and} \]

\[\Sigma_{1,4} = \int_{-1/Q}^{1/Q} 2S(\alpha) \sigma_0(\alpha) K_H(\alpha) d\alpha. \]

In this section we will prove

\[\Sigma_{1,1} = \sum_{k \in [n, n+H]} m(k) \mathcal{G}(k) + o(HN) \quad (18) \]

and

\[\Sigma_{1,2} = o(HN), \quad (19) \]

while the estimation of the mean-square of \(\int_{-1/Q}^{1/Q} \sigma_0(\alpha)^2 K_H(\alpha) d\alpha \) will be performed in the next section.

Assuming that (19) holds, the contribution of \(\Sigma_{1,3} \) and \(\Sigma_{1,4} \) can be estimated using the Cauchy-Schwarz inequality and

\[\int_{-1/Q}^{1/Q} |S(\alpha)|^2 d\alpha \ll N, \quad (20) \]

which can be proved using the same argument in the proof of Corollary 3 of Languasco-Perelli [9]. We obtain

\[\Sigma_{1,3} = o(HN) \quad \text{and} \quad \Sigma_{1,4} = o(HN). \quad (21) \]

Hence, by (17)-(19) and (21), we have that (5) holds.

Now we proceed to evaluate \(\Sigma_{1,1} \) and \(\Sigma_{1,2} \).

Contribution of \(\Sigma_{1,1} \)

Squaring out we obtain

\[\int_{-1/2}^{1/2} T(\alpha)^2 K_H(\alpha) d\alpha = \sum_{k \in [n, n+H]} m(k) \]

and hence, using (11) and (13), we get

\[\int_{-1/Q}^{1/Q} T(\alpha)^2 K_H(\alpha) d\alpha = \int_{-1/2}^{1/2} T(\alpha)^2 K_H(\alpha) d\alpha + O(Q^2) = \sum_{k \in [n, n+H]} m(k) + o(HN). \quad (22) \]

Using the Prime Number Theorem, the Cauchy-Schwarz inequality and arguing analogously, we can write

\[\int_{-1/Q}^{1/Q} S(\alpha) T(\alpha) K_H(\alpha) d\alpha = \sum_{k \in [n, n+H]} m'(k) + o(HN), \quad (23) \]
where
\[
m'(k) = \sum_{N < m \leq 2N} \Lambda(m) \sum_{N < h \leq 2N \atop m + h = k} 1.
\]

Again by the Prime Number Theorem, we get
\[
\sum_{k \in [n, n + H)} m(k) = \sum_{k \in [n, n + H)} m'(k) + o(HN) \tag{24}
\]
and hence, by (22)-(24), we have
\[
\Sigma_{1,1} = \sum_{k \in [n, n + H)} m(k) + o(HN). \tag{25}
\]

Using the Theorem of Languasco [8] and by partial summation, it is easy to prove
\[
\sum_{k \in [n, n + H)} m(k) = \sum_{k \in [n, n + H)} m(k) \mathcal{G}(k) + o(HN) \quad \text{for} \quad H \geq L^{2/3+\varepsilon}. \tag{26}
\]

Now (18) follows from (25) and (26).

Contribution of \(\Sigma_{1,2}\)

Since
\[
\Sigma_{2}(\alpha)^2 \ll \left(\sum_{|\gamma| \leq T \atop \beta \notin \mathcal{I}} T_{\rho}(\alpha)^2 \right)^2 |K_H(\alpha)|^2 + |R(\alpha)|^2,
\]
we have
\[
\Sigma_{1,2} \ll A_1 + A_2 + A_3, \tag{27}
\]
where
\[
A_1 = \int_{-1/Q}^{1/Q} | \sum_{|\gamma| \leq T \atop \beta \notin \mathcal{I}} T_{\rho}(\alpha)|^2 |K_H(\alpha)| d\alpha,
\]
\[
A_2 = \int_{-1/Q}^{1/Q} | \sum_{|\gamma| > T \atop \beta \notin \mathcal{I}} T_{\rho}(\alpha)|^2 |K_H(\alpha)| d\alpha
\]
and
\[
A_3 = \int_{-1/Q}^{1/Q} |R(\alpha)|^2 |K_H(\alpha)| d\alpha.
\]

Using (11) and Gallagher’s lemma, we obtain
\[
A_1 \ll \frac{H}{Q^2} \left(\int_{N}^{2N} | \sum_{x < m < x+Q \atop |\gamma| \leq T \atop \beta \notin \mathcal{I}} a_p(m)|^2 |d\alpha + \int_{N-2N}^{N} | \sum_{N < m < x+Q \atop |\gamma| \leq T \atop \beta \notin \mathcal{I}} a_p(m)|^2 |d\alpha
\]
\[
+ \int_{2N-Q}^{2N} | \sum_{x < m \leq 2N \atop |\gamma| \leq T \atop \beta \notin \mathcal{I}} a_p(m)|^2 |d\alpha \right) = A_{1,1} + A_{1,2} + A_{1,3}, \tag{28}
\]
say. Interchanging summation and integration in $A_{1,1}$, we get
\[
A_{1,1} \ll \frac{H}{Q^2} \int_{N}^{2N} \left| \int_{[x]+1}^{[x]+Q} \sum_{|\gamma| \leq T, \beta \notin I} t^{\rho-1} dt \right|^2 dx
\]

\[\ll \frac{H}{Q^2} \int_{N}^{2N} \left(\int_{x}^{x+Q} - \int_{x}^{[x]+1} - \int_{[x]+Q}^{x+Q} \right) \sum_{|\gamma| \leq T, \beta \notin I} t^{\rho-1} dt \right|^2 dx. \tag{29}\]

To bound the contribution of the integral on $[x, [x]+1]$ in (29), we argue as follows. Interchanging summation and integration, we get
\[
\int_{N}^{2N} \left| \int_{x}^{[x]+1} \sum_{|\gamma| \leq T, \beta \notin I} t^{\rho-1} dt \right|^2 dx \ll \sum_{N < n \leq 2N} \int_{x}^{n+1} \sum_{|\gamma| \leq T, \beta \notin I} x^\rho \left(\frac{(n+1)/x}{\rho} - 1 \right)^2 dx
\]

and then, using $\left(\frac{(n+1)/x}{\rho} - 1 \right) \ll \min\left(\frac{1}{N}, \frac{1}{|\gamma|} \right)$, we have
\[
\int_{N}^{2N} \left| \int_{x}^{[x]+1} \sum_{|\gamma| \leq T, \beta \notin I} t^{\rho-1} dt \right|^2 dx \ll L^4 \max_{\sigma \notin I} N^{2\sigma-1} N \left(\sigma, \frac{N}{Q} \right). \tag{30}\]

To estimate the integral on $[x+Q, x+Q]$ in (29) we proceed analogously and hence we get
\[
\int_{N}^{2N} \left| \int_{x+Q}^{[x]+1} \sum_{|\gamma| \leq T, \beta \notin I} t^{\rho-1} dt \right|^2 dx \ll L^4 \max_{\sigma \notin I} N^{2\sigma-1} N \left(\sigma, \frac{N}{Q} \right). \tag{31}\]

Now we treat the integral on $[x, x+Q]$ in (29). Proceeding as above we obtain
\[
\int_{N}^{2N} \left| \int_{x}^{x+Q} \sum_{|\gamma| \leq T, \beta \notin I} t^{\rho-1} dt \right|^2 dx \ll \int_{N}^{2N} \left| \sum_{|\gamma| \leq T, \beta \notin I} x^\rho \left(\frac{1+Q/x}{\rho} - 1 \right)^2 dx \tag{32}\]

\[\ll Q^2 L^4 \max_{\sigma \notin I} N^{2\sigma-1} N \left(\sigma, \frac{N}{Q} \right), \]

where the last inequality follows by Lemma 1. Choosing, in the definition of the interval I,
\[
a = \frac{1 + 3\theta}{2} - l \frac{\log L}{L} \quad \text{and} \quad b = \frac{5 - 3\theta}{6} + k \frac{\log L}{L}, \tag{33}\]

where $l > \frac{27 (1-\theta)}{21 - 3\theta}$ and k is a sufficiently large constant, we have, using Ingham-Huxley’s density estimate, see, e.g., Ivić [6], and (29)-(33), that
\[
A_{1,1} \ll HL^4 \max_{\sigma \notin I} N^{2\sigma-1} N \left(\sigma, \frac{N}{Q} \right) = o(HN). \tag{34}\]
Interchanging summation and integration in $A_{1,2}$, we get

$$A_{1,2} \ll \frac{H}{Q^2} \int_{N-Q}^{N} \left| \sum_{|\gamma| \leq T} x^\rho c_{\rho, Q} \right|^2 dx,$$

where $c_{\rho, Q} = \left(\left(\frac{|x+Q|}{x} \right)^\rho - \left(\frac{N}{x} \right)^\rho \right) / \rho$. Splitting the summation according to $|\gamma| \leq N/Q$ and $N/Q \leq |\gamma| \leq T$ and using $c_{\rho, Q} \ll \min\left(\frac{Q}{N}, \frac{1}{|\gamma|} \right)$, we obtain

$$A_{1,2} \ll \frac{H}{Q^2} \left(\frac{Q^2}{N^2} \int_{N-Q}^{N} |\gamma|^2 dx + \int_{N-Q}^{N} \sum_{N/Q \leq |\gamma| \leq T} |\gamma|^2 dx \right) \ll HQ L^4 \max_{\sigma \in I} N^{2\sigma - 2} N(\sigma, \frac{N}{Q})^2.$$

Using Ingham-Huxley’s density estimate, we see that the maximum is attained at $\sigma = 1/2$ and hence we can write

$$A_{1,2} \ll HQL^4 N^{-1} \left(\frac{N}{Q} \right)^2 L^2 = \frac{HN L^6}{Q} = o(HN).$$

(35)

$A_{1,3}$ can be bounded following the lines of the estimation of $A_{1,2}$. We have

$$A_{1,3} = o(HN).$$

(36)

Inserting (34) and (35)-(36) in (28) we obtain

$$A_1 = o(HN).$$

(37)

Now we proceed to estimate A_2. By (11) we get

$$A_2 \ll H \int_{-1/Q}^{1/Q} \left| \sum_{N < m \leq 2N} \sum_{|\gamma| > T} a_{\rho}(m) e(m\alpha) \right|^2 d\alpha.$$

(38)

Using (38), Gallagher’s lemma and the explicit formula for $\psi(x)$, see equations (9)-(10) in ch. 17 of Davenport [3], we have

$$A_2 \ll \frac{H}{Q^2} \int_{N-Q}^{2N} \frac{N^2 L^4}{T^2} dx \ll \frac{HN^3}{Q^2 T^2} L^4 = o(HN).$$

(39)

To bound A_3 we use (11), Gallagher’s lemma and the explicit formula for $\psi(x)$, see equation (1) in ch. 17 of Davenport [3]. Hence

$$A_3 \ll \frac{H}{Q^2} \int_{N-Q}^{2N} \left| \sum_{x < m \leq x+Q \atop N < m \leq 2N} \left(\Lambda(m) - 1 + \sum_{\rho} a_{\rho}(m) \right) \right|^2 dx$$

(40)

$$\ll \frac{H}{Q^2} \int_{N-Q}^{2N} L^4 dx \ll \frac{HN L^4}{Q^2} = o(HN).$$

Now (19) follows inserting (37) and (39)-(40) in (27).
6. Mean-square estimate of \(\Sigma_b(\alpha)^2 \)

Squaring out and using the definition of \(\Sigma_b(\alpha) \), we get

\[
\sum_{\frac{1}{2} N < \alpha \leq \frac{3}{2} N} \left| \int_{-1/Q}^{1/Q} \Sigma_b(\alpha)^2 K_H(\alpha) \, d\alpha \right|^2
\]

\[
= \sum_{\frac{1}{2} N < \alpha \leq \frac{3}{2} N} \left| \int_{-Q}^{1/Q} \sum_{|\gamma| \leq T} T_\rho(\alpha) K_H(\alpha) \, d\alpha \right| \left| \int_{-Q}^{1/Q} \sum_{|\gamma'| \leq T} T_\rho'(\delta) K_H(\delta) \, d\delta \right|
\]

\[
\ll \int_{-1/Q}^{1/Q} \left| \sum_{|\gamma| \leq T} T_\rho(\alpha) \right|^2 \left(\int_{-1/Q}^{1/Q} \left| \sum_{|\gamma'| \leq T} T_\rho'(\delta) \right|^2 K_N(\alpha - \delta) \, d\delta \right) d\alpha
\]

where \(K_N(t) = \sum_{\frac{1}{2} N < \alpha \leq \frac{3}{2} N} e(-nt) \ll (N, \frac{1}{|t|}) \).

Using the latest estimate and (42), we obtain

\[
\Sigma_3 \ll H^2 N \int_{-1/Q}^{1/Q} \left| \sum_{|\gamma| \leq T} T_\rho(\alpha) \right|^2 \left(\int_{-Q}^{1/Q} \left| \sum_{|\gamma'| \leq T} T_\rho'(\delta) \right|^2 \frac{1}{|\alpha - \delta|} \, d\delta \right) d\alpha
\]

\[
+ H^2 \int_{-1/Q}^{1/Q} \left| \sum_{|\gamma| \leq T} T_\rho(\alpha) \right|^2 \left(\int_{-Q}^{1/Q} \left| \sum_{|\gamma'| \leq T} T_\rho'(\delta) \right|^2 \frac{1}{|\alpha - \delta|} \, d\delta \right) d\alpha
\]

\[
= \Sigma_{3,1} + \Sigma_{3,2},
\]

say. Using (3) and arguing as in section 6, we get

\[
\int_{-1/Q}^{1/Q} \left| \sum_{|\gamma| \leq T} T_\rho(\alpha) \right|^2 \, d\alpha \ll \int_{-1/Q}^{1/Q} |S(\alpha)|^2 \, d\alpha + O(N) \ll N,
\]

where the latest inequality follows from (20).

Now, inserting (44) in \(\Sigma_{3,1} \), we have

\[
\Sigma_{3,1} \ll H^2 N \left(\max_{\alpha \in (-1/Q,1/Q)} \int_{-Q}^{1/Q} \left| \sum_{|\gamma| \leq T} T_\rho(\alpha) \right|^2 \, d\delta \right)
\]

\[
\ll H^2 N \left(\max_{\delta \in (-1/Q,1/Q)} \left| \sum_{|\gamma| \leq T} T_\rho(\delta) \right|^2 \right).
\]
To bound $\Sigma_{3,2}$, we argue as for $\Sigma_{3,1}$ and we can prove that the bound in (45) holds, with an extra L factor, for $\Sigma_{3,2}$ too. Finally, by (41), (43), (45) and the above remark, we obtain

$$\sum_{\frac{3}{2}N \leq n \leq 2N} \left| \int_{-1/Q}^{1/Q} \left(\sum_{\gamma \in \beta \in I} T_\rho(\alpha) \right)^2 K_H(\alpha) \right|^2 \ll H^2 NL \left(\max_{\delta \in (-1/Q,1/Q)} \left| \sum_{|\gamma| \leq T} T_\rho(\delta)^2 \right| \right). \quad (46)$$

Using Lemma 2 and a standard argument to bound sums over zeros of $\zeta(s)$, we have

$$\sum_{|\gamma| \leq T} T_\rho(\delta) \ll L^2 \left(\max_{\sigma < 7/9} N^\sigma \max_{|t| \leq T} N(\sigma, t) |t|^{-1/2} \right. \left. + \max_{\sigma \geq 7/9} N^\sigma \max_{|t| \leq T} N(\sigma, t) |t|^{-1/2} \right)$$

$$\ll L^2 \left(\max_{\sigma < 7/9} N^\sigma N(\sigma, T) T^{-1/2} + \max_{\sigma \geq 7/9} N^\sigma \right). \quad (47)$$

By Ingham-Huxley’s density estimate, we have that the first maximum is attained at $\sigma = a$ and the second at $\sigma = b$. Hence, by (46) and (47), we see that (6) holds.

REFERENCES

Danilo Bazzanella
Dipartimento di Matematica
Politecnico di Torino
Corso Duca degli Abruzzi 24
10129 Torino, Italy
e-mail : bazzanella@polito.it

Alessandro Languasco
Dipartimento di Matematica Pura e Applicata
Università di Padova
Via Belzoni 7
35131 Padova, Italy
e-mail : languasco@math.unipd.it