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An extension of the Blume-Emery-Griffiths model with a plaquette four-spin interaction term, on the square
lattice, is investigated by means of the cluster variation method in the square approximation. The ground state
of the model, for negative plaquette interaction, exhibits several new phases, including frustrated ones. At finite
temperature we obtain a quite rich phase diagram with two new phases, a ferrimagnetic and a weakly ferro-
magnetic one, and several multicritical points.@S0163-1829~96!04222-1#

I. INTRODUCTION

The spin-1 Ising model with a bilinear and biquadratic
nearest-neighbor interaction, the Blume-Emery-Griffiths
~BEG! model, has attracted a great deal of attention since it
was originally proposed to describe phase separation and su-
perfluid ordering in3He-4He mixtures.1 It has subsequently
been used to describe the properties of several systems rang-
ing from multicomponent fluids,2 microemulsions,3 semicon-
ductor alloys,4 and electronic conduction models5 to reen-
trant behavior of lyotropic nematic liquid crystals.6 It is just
the richness of its phase diagram that is one of the main
reasons for this interest. In fact, the system has been studied
by a variety of techniques: the mean field approximation,1,7–9

high-temperature series expansion,10 Monte Carlo
methods,11,12 renormalization group,13–20 effective field
theory,21–23 and cluster variation method24–27among others.
Recently, it has been shown that the global phase diagram of
this system includes nine distinct topologies and three or-
dered phases,9 with the appearence of ferrimagnetic phases
for a certain range of coupling parameters.25 The occurrence
of a reentrance in the ferrromagnetic-paramagnetic transition
has been also pointed out by some authors.19,21–24,27

In this paper we shall investigate, in the framework of the
square approximation of the cluster variation method
~CVM!,28–30 an extension of the square lattice BEG model,
which includes a four-spin~plaquette! quadrilinear interac-
tion term, in order to analyze the thermodynamic of the frus-
trated phases which arise in this case. Such phases may be
obtained also by including next-nearest-neighbor interac-
tions, but in this case it is necessary to introduce both a
bilinear and a biquadratic coupling, thus increasing the di-
mensionality of the parameter space by 2. The four-spin in-
teraction has then the advantage to allow us to obtain frus-

trated ground states in a smaller parameter space. In this
sense the model we propose can be regarded as a minimal
model for such phases.

The CVM is an approximate variational technique for the
treatment of cooperative phenomena and has been success-
fully applied to study the critical behavior of spin-1
models.24–27 It is especially suited for the analysis of com-
plex phase diagrams since the order of a phase transition can
be easily recognized and order parameters, local correlation
functions, and the free energy are readily obtained. The ac-
curacy of the approximation can be systematically improved
by increasing the basic clusters. On a square lattice, however,
the square approximation is in most cases sufficient to obtain
a qualitatively correct phase diagram and also quite good
approximations for numerical results.

The main purpose of our work is to analyze the effect of
the plaquette interaction term on the phase diagram of the
BEG model, paying particular attention to the case of a nega-
tive plaquette interaction. A negative plaquette interaction
introduces frustration effects which result in an infinite de-
generacy of the ground state, although the entropy per site
still vanishes in the limit of zero temperature. At finite tem-
perature some interesting effects appear, such as two new
phases, a ferrimagnetic and a weakly ferromagnetic one, un-
common behaviors in the order parameters, and several mul-
ticritical points.

Our paper is organized as follows. In Sec. II the model is
presented and the free energy of the system is written in the
CVM square approximation. Section III is devoted to the
analysis of ground-state configurations. In Sec. IV the equa-
tions for the critical temperature are determined. In Sec. V
we discuss the finite-temperature phase diagram and the re-
sults of CVM square calculations for the model. Some con-
cluding remarks are presented in Sec. VI.

PHYSICAL REVIEW B 1 JUNE 1996-IIVOLUME 53, NUMBER 22

530163-1829/96/53~22!/15063~8!/$10.00 15 063 © 1996 The American Physical Society



II. MODEL AND THE CVM FREE ENERGY

We consider a spin-1 model~composed of a bilinear in-
teraction, a biquadratic interaction, and crystal-field terms!
with a four-body interaction term, in the form

H52J(̂
i j &

SiSj2K(̂
i j &

Si
2Sj

21D(
i
Si

22G (
^ i jkl &

SiSjSkSl ,

~2.1!

whereSi is thez component of a spin-1 operator at sitei of
a square lattice.(^ i j & indicates summation over all nearest
neighbors,(^ i jkl & indicates summation over four sites in the
square~plaquette!, andJ.0. The above model reduces to the
Blume-Emery-Griffiths~BEG! model1 whenG50 and to the
Blume-Capel32,33 ~BC! model for K50 andG50. Notice
also that, in the limit of an extreme negative crystal field, our
model reduces to the well-known Ising model with a
plaquette interaction~see, e.g., Ref. 31!.

We shall analyze the phase transitions of the model in the
square approximation of the cluster variation method
~CVM!. In the CVM the entropy of the system is approxi-
mated as a sum of suitably weighted cluster entropies rela-
tive to a set G of maximal clusters and of all their
subclusters,29

S5 (
s,G

asNsSs , ~2.2!

where

Ss52kBTr~rslnrs! ~2.3!

is the entropy associated with the clusters. In the above
equations,kB is the Boltzmann constant,T the absolute tem-
perature,Ns is the total number of clusters of thes kind,
as is a counting factor, which can be calculated using Moe-
bius inversion,29 and rs is the reduced density matrix for
clusters.

The free energy per sitef is then written as

f5 (
s,G

Ns

N
@Tr~rsHs!1kBTasTr~rslnrs!#, ~2.4!

whereHs is thens-body interaction contribution associated
with the clusters ~the maximal clusters should be taken
large enough to contain all kind of interactions present in
H).

According to the CVM, the free energyf will be mini-
mized with respect to the density matricesrs , with the con-
straints

Trrs51, rs5Trh\srh , h.s, ~2.5!

Trh\s denoting a partial trace.
In the CVM square approximation, the entropy will be the

sum of contributions of one-site clusters, two-site clusters,
and four-site clusters, and the free energy will take the form

f5Tr~r4H4!1kBTF14Tr~r1
i lnr1

i !1
1

4
Tr~r1

j lnr1
j !

1
1

4
Tr~r1

klnr1
k!1

1

4
Tr~r1

l lnr1
l !2

1

2
Tr~r2

i j lnr2
i j !

2
1

2
Tr~r2

jklnr2
jk!2

1

2
Tr~r2

kllnr2
kl!2

1

2
Tr~r2

l i lnr2
l i !

1Tr~r4lnr4!G . ~2.6!

In Eq. ~2.6! we have considered four sublattices. The labels
1, 2, and 4 refer, respectively, to site, pair, and square density
matrices, whilei , j ,k,l label the sublattices~and the sites of
the plaquette belonging to them! of the square cluster
@ i2 j , j2k,k2 l ,l2 i are nearest-neighbor~NN! sites#. More-
over,

H452
J

2
@~Si1Sk!~Sj1Sl !#1

D

4
@Si

21Sj
21Sk

21Sl
2#

2
K

2
@~Si

21Sk
2!~Sj

21Sl
2!#2G@SiSjSkSl #. ~2.7!

Taking into account the constraints, Eq.~2.5!, the free energy
f can be considered as a function of the elements of the
square density matrix only, obeying the condition Trr451.

Looking for a stationary point one obtains the equations

r4~si ,sj ,sk ,sl !5r 4~si ,sj ,sk ,sl !e
2bH4~si ,sj ,sk ,sl !e2bl,

~2.8!

whereb51/kBT,

r 4~si ,sj ,sk ,sl !

5
@r2

i j ~si ,sj !r2
jk~sj ,sk!r2

kl~sk ,sl !r2
l i ~sl ,si !#

1/2

@r1
i ~si !r1

j ~sj !r1
k~sk!r1

l ~sl !#
1/4 , ~2.9!

and

ebl5 (
si ,sj ,sk ,sl

r 4~si ,sj ,sk ,sl !e
2bH4~si ,sj ,sk ,sl !. ~2.10!

In Eqs. ~2.8!–~2.10!, si ,sj ,sk ,sl are the eigenvalues of the
spin-1 operators at sitei , j ,k,l and can take the values
21,0,1. They have been used to label the diagonal density
matrix elements.

Equations~2.8! can be solved by using the natural itera-
tion method.34 It is possible to show that the solutions ob-
tained by this method are always local minima off . When
f has many local minima, these can be determined by choos-
ing several different guess values for the iteration; the solu-
tion will be the one which minimizes the free energyf .

Once Eqs.~2.8! are solved, we can easily determine the
dipolarm(r ) (r5 i , j ,k,l ) and quadrupolarq(r ) order param-
eters in each sublattice by
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m~r !5^Sr&5r1
r ~11!2r1

r ~21!,
~2.11!

q~r !5^Sr
2&5r1

r ~11!1r1
r ~21!, r5 i , j ,k,l ,

as well as the two-site NN and four-site~plaquette! correla-
tions (̂ •••& means thermal average!.

III. GROUND STATE

In this section we shall consider the ground-state configu-
rations of the spin-1 model introduced above. The ground
state of an Ising-like spin model can be easily determined, in
the cluster variation method, by looking for the configura-
tions of the maximal clusters which minimize the free energy
at T50, that is, the internal energy. The results so obtained
are exact provided the exact ground state is homogeneous;
i.e., it can be obtained by indefinitely repeating a unique
local ground-state for a cluster equal to, or smaller than, a
maximal cluster.

In the present approximation scheme a configuration of
the maximal cluster is specified by the eigenvalues of the
four spin-1 operators lying on a square, and is denoted by
$si ,sj ,sk ,sl%, where the indices refer to the four sublattices
previously introduced.

Among the possible ground-state configurations we shall
certainly have those of the usual Blume-Emery-Griffiths
model, i.e., the ferromagnetic state$1,1,1,1% ~or
$21,21,21,21% as well!, which will be denoted byF, the
paramagnetic (P) state$0,0,0,0%, and the so-called antiqua-
drupolar or staggered quadrupolar (Q) state$0,61,0,61%.
In the Q state, all the spins belonging to two non-nearest-
neighbor sublattices (j and l or i and k) can take on the
values 1 and21 independently and with the same probabil-
ity. Given anN3M lattice there are 2NM/2 such states and
thus we have aT50 entropy per site which, in the thermo-
dynamic limit, equals12ln2, exactly reproduced by our ap-
proximation. In terms of the square density matrix this state
is characterized byr4(si ,sj ,sk ,sl)51/4 if si5sk50 and
usj u5usl u51 and zero otherwise.

In addition, having introduced a plaquette interaction
which can take on negative values, we shall consider, in
order to take into account all the possible minima of the
internal energy, also the local ground statesE, given by
$1,0,1,1% ~with degeneracy 8, since the zero spin can be in
any sublattice and the three nonzero spins can be either 1 or
21), andS, given by$1,21,1,1% ~again with degeneracy 8!.

It is easily recognized that the local ground statesE and
S correspond to inhomogeneous, highly degenerate, global
ground states. To begin with, let us consider the local ground
stateE and try to construct a global ground state in which all
the elementary plaquettes are in the stateE, an example
being reported in Fig. 1. We have two sublattices~say,k and
l ) which are occupied by1 spins only, while the other two
( i and j ) are occupied by1 and 0 spins. The relative con-
centrations of1 and 0 spins can be different in the two
sublatticesi and j , but are always equal if the two sublattices
are taken as a whole. On the average, however,1 and 0 will
be evenly distributed. Furthermore, two adjacent basic lines
~columns in Fig. 1! are indefinitely repeated with a period
equal to two lattice constants. The degeneracy of such a
state, for a lattice withN rows and M columns, is

2N/212M /2, which in the thermodynamic limit yields a van-
ishing entropy per site, again reproduced exactly by our ap-
proximation.

The case of theS local ground state is somewhat more
involved because1 and 2 spins can coexist in the same
plaquette and hence one may ask whether the1/2 ~spin
flip! symmetry is broken or not in the global ground state. If
the symmetry is broken, the only plaquettes available to
build up the local ground state are, e.g., those with three
1 spins and one2 spin, and the global ground state can be
obtained from theE one by replacing all the 0 spins with
2 spins. We shall denote this case byA from now on. If the
spin-flip symmetry is preserved, the global ground state is
made up of plaquettes which satisfy the condition

sisjsksl521, ~3.1!

and an example is shown in Fig. 2. In this case one can
choose freely the value (1 or 2) of all the spins in a given
row and a given column, and the remaining spins are deter-
mined by Eq.~3.1!. The degeneracy is then 2N1M21 and
again the entropy per site vanishes in the thermodynamic
limit, as our approximation predicts.

In order to determine which state is the ground state in a
given point of theT50 phase space we have computed the
internal energy per sitee5Tr(r4H4) of each state, obtaining

eF5D22K22J2G, ~3.2!

FIG. 1. An example of theE ground state.

FIG. 2. An example of theS ground state.
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eP50,

eQ5
D

2
,

eE5
3

4
D2K2J,

eA5D22K1G,

eS5D22K1G.

The boundary between the different phases can be easily
obtained by looking for the minimum of the energies above,
except for theA/S boundary, sinceeA5eS . In this case one
has to determine and compare the first terms of the low-
temperature expansions of the free energies of the two
phases.

For theS phase, it is easily recognized~e.g., by numeri-
cal inspection! that the first excitations above the ground
state are theF-like local states. The square density matrix at
infinitesimal temperature will be given by

r4~si ,sj ,sk ,sl !5
12«S
8

if sisjsksl521,

r4~si ,sj ,sk ,sl !5
«S
2

if si5sj5sk5sl561, ~3.3!

with «S infinitesimal and the remaining elements negligible
with respect to«S . The free energy, Eq.~2.6!, then takes the
form

f S522K1D1G22«S~J1G!1kBTF8LS 12«S
8 D

12LS «S
2 D24LS 12«S

4 D24LS 11«S
4 D2 ln2G ,

~3.4!

whereL(x)5xlnx. Minimizing with respect to«S one finds
«S5

1
4exp@b(2J12G)#, and then

f S522K1D1G2kBT«S1•••. ~3.5!

For theA phase one sees that the first interactions above
the ground state are obtained replacing the2 spins of the
ground state with zero spins. The square density matrix at
very low temperature is then

r4~1,1,1,21!5r4~1,1,21,1!5
12«A
2

,

r4~1,1,1,0!5r4~1,1,0,1!5
«A
2
, ~3.6!

where again«A is infinitesimal and the remaining elements
are negligible with respect to«A . The free energy now be-
comes

f A522K1D1G1«A~2J1K2D/42G!

1kBTF12LS 12«A
2 D1

1

2
LS «A

2 D1
1

4
ln2G , ~3.7!

which, minimized with respect to «A , yields
«A5exp@b(4J24K1D14G)# and

f A522K1D1G2
1

4
kBT«A1•••. ~3.8!

Comparing Eq.~3.5! with Eq. ~3.8! one sees that the tran-
sition between theS and theA phases takes place for
G52D/212K2J. Reporting on the same plane this tran-
sition line together with those obtained by simple compari-
son of internal energies we have obtained three possible to-
pologies for the ground-state phase diagram at constant
k5K/J, which are reported in Figs. 3–5.

For k.1/2 ~Fig. 3! we find only three ground states,F,
P, andS. The unique substantial modification with respect
to the ordinary BEG model is the replacement of theF
ground state with theS one ~which, however, turns into a
ferromagneticlike phase at finite temperature! for
G/J,21.

For 21,k,1/2 ~Fig. 4! theE andA ground states ap-
pear, actually breaking the sublattice invariance. It is on

FIG. 3. Ground-state phase diagram fork5K/J.1/2. The
F/P phase boundary is given byG5D22K22J and theS/P one
by G52D12K.

FIG. 4. Ground-state phase diagram for21,k,1/2.
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these regions of the phase diagram that most of our attention
will concentrate in the following.

Finally, for k,21 ~Fig. 5! the antiquadrupolarQ ground
state also appears. The antiquadrupolar phase is well known
from the study of the ordinary BEG model and we shall
almost completely disregard it, since here we are mainly
concerned with the effects due to the plaquette interaction
term. Our approximation scheme, however, does not need
any modification in order to take into account also this phase.

IV. CRITICAL TEMPERATURE

In order to determine the temperature phase diagram it is
useful to obtain explicitly the equation for the critical tem-
perature of the ferromagnetic-paramagnetic transition. Since
in this case no sublattices are to be introduced, only two
order parametersm and q (m5m(r ), q5q(r ), r5 i , j ,k,l )
and three two-site NN correlations c15^SiSj&,
c25^Si

2Sj
2&, cx5^SiSj

2& are to be considered. They can be
written in terms of the square density matrix elements as

m5 (
si ,sj ,sk ,sl

sir4~si ,sj ,sk ,sl !,

q5 (
si ,sj ,sk ,sl

si
2r4~si ,sj ,sk ,sl !,

c15 (
si ,sj ,sk ,sl

sisjr4~si ,sj ,sk ,sl !,

c25 (
si ,sj ,sk ,sl

si
2sj

2r4~si ,sj ,sk ,sl !,

cx5 (
si ,sj ,sk ,sl

sisj
2r4~si ,sj ,sk ,sl !. ~4.1!

Inserting Eq.~2.8! into Eq. ~4.1! and considering that the
site and pair density matrix elements can be easily expressed
as linear combinations ofm, q, c1 , c2 , andcx ,

26 we obtain
five equations in the variablesm,q,c1 ,c2 ,cx . The critical
temperature is evaluated by considering the limitm→0. We
obtain the following equation for the critical temperature

SW01
L1
2q̄

2
L2

q̄2 c̄2
D SW02

L3

c̄11 c̄2
1

L4

q̄2 c̄2
D

1S L4

q̄2 c̄2
2
L5

q̄
D S L2

q̄2 c̄2
2

4L5

c̄11 c̄2
D 50, ~4.2!

where, for compactness, we have introduced several quanti-
ties which will be defined in the sequel, andq̄, c̄1, andc̄2 are
the valuesq, c1 , andc2 for m→0. These quantities are

L154g1a119g2a214g3a312g4a414g5a5

1g6a612g7a71g8a8 ,

L256g2a214g5a512g6a614g7a712g8a8 ,

L358g1a118g2a218g3a314g4a412g5a5 ,

L454g2a212g5a5 ,

L552g1a113g2a212g3a31g4a41g5a5 ,

W052g1a118g2a218g3a3116g4a418g5a518g6a6

18g7a718g8a818g9a914g10a1012g11a111a12,

~4.3!

where

a15h2, a25hv, a35hz, a45~hz!1/2v,

a55~ht!1/2v, a65zv, a75v2, a85tv,

a95~zt!1/2v, a105hz, a115z2, a125t2,
~4.4!

with

h5
c̄21 c̄1
~8q̄!1/2

, z5
c̄22 c̄1
~8q̄!1/2

, t5
11 c̄222q̄

~12q̄!1/2
,

v5
q̄2 c̄2

~8q̄~12q̄!!1/4
. ~4.5!

The parameters of the model enter expression Eq.~4.3! by
means of the functionsg i , i51, . . .,11, introduced above
and defined as

g15eb~2D12J12K1G!, g25eb~23D/41J1K !,

g35eb~2D12K2G!, g45eb~23D/41K !,

g55eb~2D1J1K !/2,

g65eb~23D/42J1K !,

g75eb~2D/2!, g85eb~2D/4!,

g95eb~2D2J1K !/2, g105eb~2D12K1G!,

g115eb~2D22J12K1G!. ~4.6!

The quadrupolar order parameterq̄ and the correlationsc̄1
and c̄2 satisfy the equations

FIG. 5. Ground-state phase diagram fork,21.
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q̄5~2g1a116g2a218g3a3112g4a414g5a516g6a614g7a712g8a814g9a914g10a1012g11a11!/W0 ,

c̄ 15~2g1a114g2a212g5a524g6a622g9a922g11a11!/W0, ~4.7!

c̄ 25~2g1a114g2a218g3a318g4a412g5a514g6a612g9a914g10a1012g11a11!/W0 .

In particular, in the limitD→2`, corresponding to the
Ising model with a plaquette interaction, the critical line is
given by

G

J
5

1

2bJ
ln

2e2bJ

~e2bJ21!~2e2bJ21!
. ~4.8!

It can be checked that one has alwaysG/J.21, with G/J
tending to the limit value21 for vanishing temperature, and
that our result is in good agreement with a previous transfer-
matrix study by Nightingale.31 Furthermore, forG/J50 one
recovers exp(2bJ)5(51A17)/4, as in Ref. 28.

V. TEMPERATURE PHASE DIAGRAM

In the present section we shall present and discuss the
results we have obtained for the finite-temperature phase dia-
gram, paying particular attention to the effects of the
plaquette interaction term.

As a first step we shall investigate the modifications oc-
curring in the BEG model ferromagnetic-paramagnetic tran-
sition as the plaquette interaction is introduced, for the range
of K/J values considered in Refs. 9,20~as we said above, we
do not consider here the antiquadrupolar phase!.

A general feature is that a positiveG enhances the ferro-
magnetic long-range order, increasing the corresponding
transition temperature, and vice versa for negativeG. In
some cases a negative plaquette interaction induces a reen-
trant behavior which was not found forG50. It is also note-
worthy that, forG50 andK/J521, we do not find a reen-
trant behavior, in agreement with renormalization group and
in contrast with mean field theory.20

Let us now turn our attention to the situations in which,
for negative enoughG/J, the S, A, and E ground states
appear. We shall takeK/J521, corresponding to the
ground state depicted in Fig. 4~indeedK/J521 is at the
border between this situation and the one of Fig. 5, so that
the region occupied by theQ state has width 0 and the to-
pology turns out to be that of Fig. 4!, and progressively
decreaseG/J in order to analyze all the possible combina-
tions of ground states.

For G/J520.90 the ground state changes, asD/4J in-
creases, fromF to E and then toP and the corresponding
finite-temperature phase diagram is reported in Fig. 6~a!. The
E ground state turns into a ferrimagnetic phase at finite tem-
perature, which has been denoted byI . This phase is rather
peculiar since it is characterized by the relation
mi5mj,mk5ml ~and the same forq); that is, two of the
four sublattices~a nearest-neighbor pair, say,i and j ) have
large values of the order parameters, which saturate to 1 at
low temperatures, while the other two have smaller order
parameters, which tend to 1/2 as the temperature vanishes. It

turns out that the lattice is divided in lines of spins with
alternatively high and low values of the order parameters. In
the case of Fig. 6~a! the ferrimagnetic and paramagnetic
phases are completely separated by the ferromagnetic phase
~except at zero temperature, of course!, but this does not hold
true in general, as can be seen in Fig. 6~b!, where a first-
order I /P transition appears at low temperature.

WhenG/J521.50 the ground states follow, for increas-
ing D/4J, in the orderS, A, E, P and the phase diagram is
reported in Fig. 7~a!. TheA andE ground states turn into the
same ferrimagnetic phaseI , with no finite-temperature tran-
sition between them, but only a zero-temperature transition
point which is indicated by an arrow in Fig. 7~a!. On the left
of this phase there is a low-temperature second-order phase
transition between theS andP phases. A similar phase dia-
gram ~without a direct I /P transition! is found for the
Blume-Capel model with plaquette interaction and shown in
Fig. 7~b!, and theS/P transition temperature tends to zero in
the limit D/4J→2`, in agreement with Eq.~4.8!.

FIG. 6. Phase diagram forK/J521.00, G/J520.90 ~a! and
K/J520.50,G/J520.80 ~b!.
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Decreasing furtherG/J we have considered the case
G/J522.10, when the sequence of ground states isS, A,
P, obtaining the phase diagram reported in Fig. 8. It is very
simple, with only a first-order transition separating the ferri-
magnetic and paramagnetic phases. A low-temperature
second-orderS/P transition should occur on the left side of
the phase diagram, but it is not found numerically, perhaps
because the transition temperature is too low.

Notice also that a common feature of all the phase dia-
grams discussed above is the presence of several multicritical

points and reentrant transition lines.
In order to better understand the new phases that we have

obtained, it is useful to look at how the order parameters
behave as the temperature varies. Figure 9 refers to the
phase diagram in Fig. 7~b! and has been obtained for a se-
quence of increasing values ofD/4J. In Fig. 9~a! we have a
second-order transition from theS phase, characterized by
sublattice invariance and weak ferromagnetic long-range or-
der with a vanishing~as temperature vanishes! dipolar order
parameter, into the paramagnetic phase. IncreasingD/4J the

FIG. 7. Phase diagram forK/J521.00, G/J521.50 ~a! and
K/J50,G/J521.20~b!. The arrows indicate the zero-temperature
transition points betweenA andE ground states.

FIG. 8. Phase diagram forK/J521.00,G/J522.10.

FIG. 9. Order parametersm andq vs temperature forK/J50,
G/J521.20, andD/4J50.08 ~a!, 0.12 ~b!, and 0.26~c!. Letters
indicate sublattices.
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ground state becomesA, with @Fig. 9~b!# breaking of the
sublattice invariance. At low temperatures the dipolar order
parameter vanishes in two of the four sublattices and satu-
rates in the remaining two, giving rise to the ferrimagnetic
phaseI . By further increasingD/4J @Fig. 9~c!# we have still
the ferrimagnetic phaseI at low temperatures, but the ground
state is nowE: the dipolar order parameter saturates in two

of the four sublattices and tends to 1/2 in the remaining two.
Finally, a direct, first-order transition from theI ~with ground
stateA) to theP phase is reported in Fig. 10, which refers to
the phase diagram given in Fig. 7~a!.

VI. CONCLUSIONS

We have studied the square lattice Blume-Emery-Griffiths
model with a plaquette interaction, using the square approxi-
mation of the cluster variation method. After a detailed study
of the ground state, which for negative plaquette interaction
exhibits several new frustrated phases, equations for the
ferromagnetic-paramagnetic critical temperature have been
derived and the finite-temperature phase diagram has been
discussed, making comparisons with the ordinary BEG
model and with a previous result on the Ising model with
plaquette interaction.

The frustrated ground states evolve at finite temperature
in a homogeneous phaseS with weak ferromagnetic long-
range order and in a ferrimagnetic phaseI , and the phase
diagram exhibits a quite rich structure, with several multi-
critical points.
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