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Abstract We derive a residual-based a posterior: error estimator
for a stabilized finite element discretization of certain incompressible
Oseen-like equations. We focus our attention on the behaviour of the
effectivity index and we carry on a numerical study of its sensitive-
ness to the problem and mesh parameters. We also consider a scalar
reaction-convection-diffusion problem and a divergence-free projec-
tion problem in order to investigate the effects on the robustness of
our a posteriori error estimator of the reaction-convection-diffusion
phenomena and, separately, of the incompressibility constraint.
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1 Introduction

The use of adaptive methods for the numerical discretization of flow
models is a subject of strong interest from both a theoretical and an
applicative point of view. From the pioneering work of Babuska and
Rheinboldt [2], many important problems have been solved and inter-
esting results have been achieved. Many other questions, concerning,
e.g., saddle point problems and singularly perturbed problems with
parameter becoming very small or very large, are still open. One of
them is to find robust a posteriori error estimates. The robustness of
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an a posteriori error estimate concerns the upper and lower bounds
for the effectivity index defined as the ratio between the error esti-
mator and the true error. The ideal situation is when the effectivity
index is uniformly bounded from above and from below with respect
to any mesh-size and any parameter of the problem. Such a strong
robustness implies that one can easily build an adaptive algorithm
which guarantees reliability, by controlling the error in the solution
from above, and efficiency, by controlling the error from below.

In [3], we considered the stationary Oseen equations and we ob-
tained a uniform lower bound for the inverse of the effectivity index
and an upper bound which grows linearly with the Reynolds number.

Here, we consider the generalized stationary Oseen equations ob-
tained by adding a zero-order term in the velocity to the momen-
tum equation. This model has already been considered by several
authors, e.g. [13], [15]. A zero-order term can be produced by a semi-
discretization in time. Another source is a shift of the operator to
efficiently deal with the non-linearity of the momentum equation of
the Navier-Stokes problem by a Newton-like method. A third mo-
tivation is a shift of the spectrum of the operator in the numerical
computation of eigenvalues and eigenfunctions.

For this model, we analytically derive an error estimator and we
report many numerical tests. Our goal is to carefully study the de-
pendence of the bounds for the effectivity index from above and from
below on all the parameters of the problem (the physical as well as
the mesh parameters). We carefully control the coefficients appear-
ing in each inequality and our final estimates can be considered as
sharp as possible. Sharpness is proved by the fact that our numerical
tests essentially confirm the predicted theoretical behaviour of the
effectivity index.

Furthermore, we highlight the effect of the different physical phe-
nomena modeled by the Oseen equation upon the robustness of the
a posteriori error estimate. One of these phenomena is the mix-
ing of diffusion and transport. Therefore we compare our techniques
with those presented in [20] for a scalar reaction-convection-diffusion
model. From this comparison, we see that our techniques leads to
estimates as sharp as those in [20] which can be considered the state
of the art for residual based a posteriori errors estimates for reaction-
convection-diffusion models. Another important phenomenon is the
incompressibility of the flow. To study its effect upon robustness we
consider a reduced model obtained from the Oseen model by neglect-
ing the diffusion and convection terms. This leads to a divergence-
free projection model [4], useful also in linear elasticity theory [5],
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for which we derive several a posteriori error estimators. Then, we
characterize those norms for the true error that yield a robust error
estimator.

2 Linear incompressible flow model
2.1 The continuous problem

We counsider the following steady-state, Oseen-like problem:

1
—R—Au+(a-v)u+zu+Vp:f in Q, (2.1)
e
Vou=0  inQ, (2.2)
u=0 on 012, (2.3)

where: Re is the Reynolds number; z > 0 is a constant in the whole
domain; € is a bounded Lipschitz continuous domain in R?; a €
[HY(Q)]?2 N [L>®(2)]? with V-a =0 in Q; f €[L2(Q)]>.

Let us first derive a weak formulation of problem (2.1)-(2.3). The

functional spaces we deal with are the usual Sobolev spaces H! (),

H}(Q) and Lebesgue spaces L%(Q), L3(2). Moreover we set V def

[Hi(2)]? and Q aef L2(2). The weak formulation of the problem is:

Find [u,p]€VxQ such that V[v,ql € VxQ

(Y, 0) (@0 9) 0,0) 2 (0,0) = (5,7 0) = (£,0), (2.)
(0, v-u)=0,  (25)

where (.,.) denotes the usual inner product in L?(£2) or in [L2(€2)]2.
As usual ||. ||, denotes the L2-norm, |.||; the H'-norm and |.|; the
H'-seminorm. We define our energy norm for the velocity on some
w C Q in the following manner:

2dgfi

2 2
lull = 2 1uliw 2wl - (2.6)

Existence and uniqueness of the solution for all positive Re follows
from the classical coercivity and inf — sup inequality:

inf (Qavv)

p A2V o 2.7
9€Q\{0} vevroy lgllo [V ]y >0

(see, e.g., [10], [13], [14]).
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2.2 The discrete problem

In order to discretize problem (2.1)-(2.3), we assume £2 to be a polyg-
onal domain and we introduce a regular family of partitions {7}, of
Q into triangles which satisfies the usual conformity and minimal-
angle conditions [6]. It is useful to introduce the diameter hp of
the element 7' € 7j. Then, the parameter h of the family {7},
is h = maxye7, hr.

In what follows, we are going to use continuous finite elements for
the velocity and the pressure:

v, {thVﬂ [Co(ﬁ)]Q: Uh|T€[Pk(T)]2aVTE77z}v (2.8)

QD {meQnc@: g, em@ VT e}, (29

where P;(7T) is the space of polynomials of degree 7 > 1 on the ele-
ment T € Tp. In the discretization of the problem, we also consider
approximations of the data a, f by some projections Ilra, Itf,
whose definition will be given later on.

With an arbitrary choice of £ and [ these spaces need not satisfy
the discrete inf-sup condition for the bilinear form (pp,V-vp) [4],
[10]. However, this may be avoided by resorting to a consistently
modified approximation of the problem known as the Streamline
Upwind/Petrov Galerkin (SUPG) method [8], [9]: Find [up,ph] €
Vi, x Qp, such that Y[vg, qn] € Vi, X Qp

1
Te (Vup, Vop)+ ((Lra- V) up,vy) + 2 (up, vp) — (pr, V- v5) +

1
+ZTT<_E Aup+ (Ira-V)up + zup + Vpy, (IIva-V) Uh)

TET, T

+ > 00 (V-up, V-vp) = (Ir f,vp)

TeTh
+ Z mr (I f, (IIra-V)vy)p, (2.10)
TeTh
(qn, V- up) +
+Z T (—LAuth(HTa-V)uthzuh—i—Vph th> =
Re ’ T

TeTh
= > 1 (rf,Vay)p, (2.11)
TETs

The parameters 77 and d7 depend on the local conditions of the flow
in each element, i.e., following [8]:
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T d;f mk 3 Re and 5T if m

def hy def .
T = m and 5T = >\||HTa||oo,ThT lf RBT Z 1. Here

d 11 hrR d . .
Rer lef mk““”g# and my lef mln{%, C%}, C, being the
2
< Cy “ Vvh ||0,Ta
Yvp, € Vj,. For linear elements, obviously, m; = % We take A either
1 or 0, respectively if we want consider the § — terms or not.
Throughout the paper, we often use the following notations:

Notation 1 For each &n > 0: £ S n < 3C >0:¢& < Cu;
Exn < ¢€3n and n 3¢ Wzthout further specification, we
intend the constant C' independent of the mesh-size and the Reynolds
number. Moreover for each &€ > 0,np > 0: ¢ X n < JC; > 0:
& < C1n with a constant Cy at most of the order of magnitude of the
unity.

IIta hZRe .
% if Rer < 1, whereas

constant of the inverse inequality [11]: A%

Remark 1 We assume that problem (2.1)-(2.3) has been written in
non-dimensional variables. This implies || < 1 so that hy < 1,
VT € Tp; moreover, || a || < land | Iraly,, 21, VT € Th.

o0,wr

3 A residual-based error estimator

In this section, we derive a residual-based error estimator for our
model problem following Verfiirth’s works [16], [17], [18], [19], [20].
Particularly, we shall derive a global upper bound and a local lower
bound for the error measured in an energy-like norm. At first, we
introduce some notation which will be used for the construction of
the estimator.

3.1 Definitions and general results

For any T €T;, we denote by £(T") the set of its edges; we denote by
def

En = UTeTh E(T) the set of all edges of the triangulation. Moreover,
we define &, o def {Ee&, : EZ0N}. For each triangle T' € Tj, and
for each side F € &, we define: wr = U{T, )ﬂg(T’);éQ)}T wE =
U{T’ Eeg(T")} T', &or = U{T’ OTNOT" #0} T', bp = U{T’ Bror 20y 1T
Note that the sets wr and wg are unions of triangles that share
at least one edge with 7" or E respectively, whereas the sets wp and
wg are unions of triangles that share at least one point with T" or E.
For each edge F € &, we counsider a unit vector ng such that ng
is orthogonal to E. Given any E € &, and any ¢ € L*(wp ) with
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®|. € CO(T") VI'" € wg, we denote by [¢]; the jump of ¢ across E
along the orientation of np.

If the minimal angle of the family {7} is bounded away from
zero, there exist constants only dependent on the smallest angle in the
triangulation such that: | 7| < hzT, VT € Ty, hy < hg, VE € £(T),
|T| < h2,, VT € wg. Let us denote by T the reference triangle, by
E the reference edge, i.e. the edge of T between the vertices 0 and 1.
Moreover, let I;T (Z,9) be the usual reference triangle bubble function

and let (;E be the usual reference edge bubble function [16], [17], [18].

Let Fp: T — T be the invertible affine mapping that maps the
reference triangle T onto the triangle T'. Then we define the triangle

bubble function by by: br def ET oF:Fl. Given any E €& o with wp =
Ty UT, let us enumerate the vertices of T and 7, counterclockwise in
such a way that the vertices of E are numbered first. Then we define
the edge bubble function bg by patching the two bubble functions:
def » -1 def 7

= bE o Ty and bE,Tb = bE‘

b, o F. ! each one being not zero

only inside Ty and T}, respectively. Moreover, for the reference edge E
we define the extension operator P : Pi(E) — P;(T) which extends
a polynomial of degree ¢ defined on the edge Etoa polynomial of the
same degree defined on T with constant values along lines orthogonal
to the edge E. Then, we define the extension operator Pg : P;(E) —
Pij(wg) which extends a polynomial of degree i defined on the edge
E to a piecewise polynomial of the same degree defined on wg by
patching the two operators: PE(')|Tﬂ def 75E ( o Fr, |E> o FT_ﬂ1|E and

def - -
PE(')|Tb = PE‘ ( OFTb|F3> OFTb1|E'

Besides, we denote by Ij, : V. — V}, the quasi-interpolation opera-
tor of Clément [7] which satisfies the following approximation prop-
erties [6]:

Lemma 1 Let T €Ty, and E €&y, be arbitrary, then
o= Iho |0 SR 0 lpg,, 0T <k <2, VoeH (@r),(3.1)
1o = Iyv llg e 3 he""% vl 1<k <2, Yoe B (ag), (32)
[ Ihv | 210 s 1< k<2, YveH(ar), (3.3)

where the constants depend only on the smallest angle in the trian-
gulation.

Definition 1 We define

ais défmin{vRe hg, }, S=TeT, or S=FE €&, (3.4)

1
NE;
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e 1
oy “f min {\/Re h, W} = quea%i arr, (3.5)
def 1 ( ) ) { 1 }
ay = —+||la + 2z | min< VRe, — ;. 3.6
Lemma 2 Let T €Ty, be arbitrary, then
72
lo-Lol2s 3 alrlv 2, voe [Hi(ar)]?.  (3.7)

Proof. The proof is a consequence of inequality (3.1) of Lemma 1
and definition (2.6). O

Lemma 3 Let E €&, be arbitrary, then
N
lo—Lollp 3 VRears vl Voe [H(@r)]’. (38)
Proof. The proof follows from Lemma 3.1 in [20] and Lemma 1. O

Definition 2 We define the following useful notation

d d
Yy —u, Yy, -y,

def _L

Th = Aup+ (Hra-V)up+zu, +Vp, — I f|

Re T
d . 1
JE,h ] [[WE . (R_ V up —php I)]] .
€ E

3.2 Global upper bound

We deal separately with the velocity error 77 and the pressure error
¥ to derive a global upper bound for the error.

Lemma 4 Let T €Ty be arbitrary. The following inequality holds

oy
| (Tra-V)(InT) o7 3 | HIrallo T 171z, -

Proof. We use Lemma 1 and the local inverse inequality
IV I lor IV =D llor +1V T llop 3 VReNT s
IV InT) oz 3 hy' 1 I T o, = ht T ooy < ﬁ 17,
to conclude that

o1
IV 02 e 3 G N T s, -

Then the thesis comes immediately. O
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Proposition 1 There exists a positive constant Cy such that, for
each k1 > 0, the following upper bound for the velocity error holds

1
Tlo £ —=1T|l,+VE U
I |||Q—\/k—1|| lo +V ki | V- un [l
2 2
7 || Hra || T 2
+Cy > a2, <1+h—200 I Rron [lg 7
TET, T

+ Z a1T hg V- uhHoT
TeTy

+ai [ Ira—all |up |, +ar [ HTrf—fllp).-  (3.9)

Proof. From the continuous momentum equation (2.1) we get:

2 (VT,70)+ (0 9) 7, 0)+2 (1,0) = 8,V +0) = 7= (Vun, V'0)

+ ((a- V) up,v)+ 2 (up,v) — (pp, V-v) = (f,v), YveV. (3.10)

Now we take v = T as a test function in this equation and we add
to it equation (2.10) with v, = I, 7 as a test function. We apply
repeatedly the Cauchy-Schwarz inequality and we use the inequalities
of Lemmas 2, 3, 4, definition (2.6) and Young’s inequality to obtain

N 1
1785 e - v g <o [ 3
2/€ 2/€
TE'Th
SRR+ Y g s VR el
TE’Th EEEhQ
1 2
Y ST+ S g (e b G Nl )
E€&p a TeTy 4
k4 ay T 2
F YRR+ Y o (5519wl )
TETh TeT,
1 ke
+ 30 ZUTR, g ol o r|io|uh|%+7 171
TETh
1 2
AL AT

The thesis follows choosing the constants ko, k3, k4, ks, kg, k7 small
enough and recalling that V-u = 0. a
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Proposition 2 There exists a positive constant Cy such that the fol-
lowing upper bound for the pressure error holds

2 2
7 || Hrall T 2
Bl llg < Co ezl T llo+ Zh%(1+h—2°° | Rl
TEeTs T

Y 2 2
A DI A AT P I SR BT 8
Tef-,—h T Eegh,ﬂ

+ [ Hra—al||up |y + 1 I f=f o} (3.11)

Proof. From the continuous inf-sup condition and equation (3.10)
we get

Blo|y< sup ——= = sup — (VT,Vv
1l vev\foy |V veV\{0} Re( )

— - (Vun, V) = (0 9) )
— 2 (up,v) + (pn, V- 0) + (f,v) } .

Now we bound the supremum of the expression in brackets by the
sum of the suprema of the first, the second and the remaining terms;
next, we integrate by parts the term — ﬁ (Vup, Vo) and we add
the discrete version of the momentum equation as before. Finally,
we apply Poincaré-Friedrichs inequality, Cauchy-Schwarz inequality,
Lemma 1 and we get

(gjvv'v) L 1
|”|1{

+((a-V)7,0) +2(T,v)

1
Bl =2 171y = (e +2) 171y <
Re

1 2 2
<Cy sup o], Z b2 || R, ||07T Z KA
veV\{0} 1 TET, TET,
2 2
+ Z hE”JE,hHgE Z KA.
E€&n a E€ép,0
2 2 2
+ Z 72|l Rrp |0,T | ra ||OO,T Z |U|1,<:;T
TET), TETh
2 2
+ Z 07 || v - up, HO,T Z |”|1,<:;T
TET, TETh

[ ra—allglun | [v]y + [ o f=Fllo|v ]}
Then, it is easy to get (3.11). O
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With a suitable choice of k1, expressions (3.9) and (3.11) may be
merged to get independent upper bounds for 77 and ¥.

Proposition 3 The following upper bounds hold

2
lor

h 73 || ra |,
IThas | 3 (5 +aty) <1+h—2°°’ I R
o) T

TET,

h2 52 ,
b X (B vty 19w+ a9l
TET, 2 T

he
+ 1> (9 + o \/Re> 1 Jen gz

Eegn,a 2

(L o) (mra—all gl + 17077 1) 612)

and

h? 2 || Oypa |2 7
[Ty 3 <—T+04?T> <1+h—200’ | R,
TET, T

2
lor

h2 52 )
oy (a—gwiT) EAR R PR

hg
+ 1 > (Q top \/Re> 1Tz 55

Ecénn 2

# (o + ) (=l ], + 1 =7 1) - (319

3.8 Local lower bound

3.3.1 Residual of the momentum equation Now we consider an ar-
bitrary triangle 7' €7}, and we show how the residual of the momen-
tum equation can bound the error from below on T'. Let us define:

wp def R br, where by is the triangle bubble function. We will also
apply the results collected in the following lemmas:
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Lemma 5 For any T € T, we have

| Rr,n |(2),T =< (Rr,h, W1) s (3.14)
|| wy ||0,T S || RT,h |0,T’ (315)
| Vwr = hot || wr o7 < hot || Reon o7 - (3.16)

Proof. The proof of these inequalities follows the guidelines of [18],
[19], [20]. O

Lemma 6 The following bound holds
o1r
(@ )Ty wr)rl Il e llooz 7= 0T Il R llo r-- (3.17)
Proof. We observe that
((a- V)T, wr)p = = (T, (a- V) wr)p

and
(@~ V) T wr)p] < lalloz VRENT g | Rropllo s
(7, (@ V) wr)p| < % 17l 0l bt | R N
so the thesis follows recalling Definition 1. O

Proposition 4 The following lower bound on each element T holds

1
el Realor 3 (o + N logrne +h2vE ) 1T 0

11 o +hr (| Hra=ally g lwnly o+ | T f =1 llor) - (3:18)

Proof. We have

1
(R1h, W) p = — T (A up, wr)p + ((Hra- V) up, wr)

+ 2 (up, wr)p + (Vop, wr)p = (f,wr)p — (U f=f,wr) ¢

Integrating by parts the second order term and subtracting the con-
tinuous momentum equation (2.4), we get

1
(Rrp,wr)p = Te (VT,Vuwr)+((a- V)T, wr) + 2z (T, wr)

— (¥, V- wr) + ((LIra—a) - V) up, wr) — (I f—f,wr) .

Next, we introduce the previous bound (3.17) and we apply the
Cauchy-Schwarz inequality and inequalities of Lemma 5. At last, we
obtain (3.18) O
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3.5.2 Inter-element jumps Next, we show how the jumps Jg ; bound
the error from below. We consider an arbitrary E € &, o and we define:

wg def Pr (Jg n) be, where by, is an edge bubble function and Pg(.) is
the extension operator. Let 7" denote any triangle belonging to wg.

Lemma 7 For any F € &, o we have

| T, IIS,E =< (JEh WE) s (3.19)
|wg HO,T' IVhe|| Jen ||07E, (3.20)

_1
o Shet lwe llog 3y 1 T n

vaE |0,E'

Proof. The proof of these inequalities follows the guidelines of [18],
[19], [20]. O

Lemma 8 The following bound holds

ay 17
((a-V)T,wE),, iT§Ellallm,Tfﬁ|||T|||Tf I TEnllog- (3-22)

Proof. We start from the identity
((a-V) T, wg),, = - (T, (a-V)wg),,

so that using (3.20) and (3.21) we have
3 > Nalwr VRNT i Vg | Jop g s
T Cwg

1 _1
3 =Tl b ® I T llo g
T’C(/JE\/Z ,

((@-9) 7, wp),,

(7, (@- V) wg),,

so the thesis follows recalling Definition 1. O

Proposition 5 The following lower bound on each internal edge E €
En holds

1
N ANERS [(—ﬁ+||a||ooT,aw +hE¢E) 17l
T Cwg Re

11 oz + (I Hra =l o Lun by o+ o f =1 llgre) | - (3:23)
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Proof. We integrate Jg j against wg on E and we apply the diver-
gence theorem. Then, we subtract the continuous momentum equa-
tion (2.4). We get

(Jz.nwE) g Z/ [( v ph1> ]dQ

1
= e (VY,Vwg),, +2(,wg),, — (¥ V- wg),,
= (Rrp,wg),,, + ((Hra—a) - V) up, wg),,
+((a-V) T, wE),, —UIrf-f,wg),, - (3.24)
We apply the Cauchy-Schwarz inequality, inequalities (3.20), (3.21)

and (3.22) on (3.24). Then, using (3.19) and relation (3.18) with
hr < hg, we get the thesis. O

3.3.8 Residual of the continuity equation Finally, we consider again
an arbitrary 7' € T;, and we show how the residual of the continuity
equation bounds from below the error for the velocity on each triangle

T. Let us define wy el [V - up] br.
Proposition 6 The following lower bound on each element T holds

al M
||| Tllr- (3.25)

Proof. As in the previous cases, we have

IV -un llor 3 VRN ly 1V - un llg

or

||V'uh||g,T:j(V'T?wT)TN \/_h

and this yields the thesis. a

3.4 Final results

Estimates (3.12) and (3.13) and inequalities

2 2
el dra|r 1 5:2r 2 2
h% =y h2 <A Hra “oo,T =1

suggest the definition of the following a posteriori error estimator on
the element 7":
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Definition 3

2
o def (h 2 2
MRy = (a—g +041,T> | R, |0,T

2
2 @ 2 A2 || IT 2 2
|3+ (5 at s ) X ra | 11V - un i3
2
1 hg )
+5 Y (s tesVEe)lJsalls (320
E€g(T)NEnn 2

Now we collect the results of all the previous subsections. In the
following theorem we introduce a strictly positive parameter «s that
we will exactly define in the sequel.

Theorem 2 There exists a constant CT such that, for each ag > 0,
the global upper bound holds

as [Tl + 112 llp < CT(as+ ) [ nky
TeT

+ (a% + a1> (| Ira—al| |up |, + | Hrf—f ||0)} . (3.27)

Proof. It follows from estimates (3.12), (3.13) and definition (3.26).
a

Definition 4 Let us define for each T € Ty,

de 1
aur ™ T a1 |6, ThrVz. (3.28)

Theorem 3 There exists a constant C’i such that the local lower
bound holds

2
oy

h =\ o
9 < C’ hr R 4,17 2
Mro S Uy o2 +ayr Vive o + n2, [a2
h% 2 2 IT 2 2
+ ? + OKLT A || 7a “oo,T ||| T |||wT
2

h 1 h
+ (—§ +oaq \/Re> — ||w ||§wT + (—Z +arr \/Re> hr
o hr ’ o3

x (I fra=al yp lun By + 1 2 f =1 13 0 ) }(3:29)
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4001

=

“5° 300F
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100+
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% 02 04 06 08 1 % 0.2 0.4 06 08 1
: ., o : )
T T
. p . 2
Figure 3.1. air  versus hr, Figure 3.2. a5y  versus  hr,
lallor=1 2=1,A=0 lallor=1 2z=1,A=0

Proof. We use definition (3.28) and equations (3.18), (3.23), (3.25).
We combine these equations and we note that

h4 1 h
(a—g-i-aiT) h2 _( E+a1Ev > , VEe€&(T), VT €Ty
2
via the regularity assumption hg < hr, we get (3.29). a

Remark 2 Here we have not considered the modified edge bubble func-
tions used in [19] and [20] because these functions give no advantage
due to the presence of the pressure term in the momentum equation
(2.1). In fact, the modified edge bubble functions depend on a parame-
ter O < 1 that can be chosen to balance the different contributions of
the velocity terms to the lower bound of the error estimator. But, to
balance the contribution of the pressure term we should take 8, > 1,
so the best choice results in 7 = 1 which corresponds to the classical
definition of the edge bubble functions.

Now we will investigate the expressions that appear in (3.29). At

def 1
first, let us define A = TReTE"

Definition 5 For each triangle T € Ty, let us define

d h
OJET gf(T‘i‘alTV >

3.30
Tt (3:30)
The parameter oz5,T as a function of hr < 1 has the constant value

a2 = i + Re on the interval (0,4] and then it strictly decreases

(see Flgure 3.1); thus, @2 is the absolute maximum of a5 - We also
define the following quantity on the considered trlangulatlon Th

o2 def 2
= 3.31
@5 = max o5y (3.31)
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Setting

y def .
j h, 3.32
min hy (3.32)

we have o = a2 if h < h, whereas o2 < a2 if h > h.

Definition 6 Let us set

2 2

d a1 h

g p lef of g ag 3 [a%+)\2<a€_+aiT>||HTa ||§O,T]. (3.33)
T 2

The parameter ag,T as a function of hy takes its maximum value &2
for hy = h (see Figure 3.2). We define

max a%yT, if h <h,

TeTh
d .
ot €S a2, if h <h<h, (3.34)
max o2, if b <h.
TeT,

The following Corollary is based on Theorem 3 and the previous
definitions.

Corollary 1 There exists a constant C| such that the local lower
bound

2 2
ke < CH A NTI2, +odr 1713,

2 2 2
a2y W Tra—al oy lun By + 020 b | T f = 13, } (3.35)

and the global lower bound

1 Qg
— 2 e <€ (—a |||T|||Q+HW||0>
5 TET, 5

2

2 2 2
+C L D M ra— a3 Vun |y + Y 1 e f=f 150, ¢ (3:36)
TET TeTh

hold true.

Now estimate (3.36) suggests the following choice for the, up to
now, generic constant a3 which appears in (3.27).
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0 0.2 04 06 0.8 1 0 200 400 600 800 1000
T Re

Figure 3.3. o3 versus h, ||a|| - =1, Figure 3.4. o} versus Re, ||| , =
, ,

z=1h=%2 =0 1, z=1h=2 Xx=0

Definition 7 Let us define

([ 1 JRe 2 Reas
(Fie +lloloon VB hthVE) + 15t
+A || Ira |2, g Reh?, if b <h,
2 Reo?
1 2
(Vi * i VR B+ IVE) + s
o2 X2 || Iya %, o Reli?, if h < h<h,
L lalleg 5 )2 )
+ : +h\/2) + — -
<‘/E vz zhz—i—a%\/zReh
v2 2
22| Tpa |2, th Rl —, if h> h.
\ ’ z(zh —I—a%\/zReh)
(3.37)

The parameter o3 is defined such that the inequality Z—é < o3 holds
5

true. The behaviour of & as a function of hy and Re is shown in

Figures 3.3 and 3.4.

Corollary 1 and Definition 3.37 yield the following corollary.
Corollary 2 There exists a constant C| such that the following global
lower bound holds

1

o] 22 M S CLles T g+ 112 ll)

TET,

2

2 2 2
+Ch] Y M Ira—all3 g lun 7 gt D I f = f 115 e -(3:38)
TET TeTh
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4 Equivalence between the true error and the error
estimator

Now we define the true error for our problem

def
te. = a3 Tllo+ 1wl (4.1)

and we define the global error estimator

def
Na = Z W%,T' (4.2)
I€Th,

For a practical and simple use of the error estimator in the construc-
tion of a sequence of adapted Delaunay triangulations, we assume
that the data f, a are interpolated by polynomials Il f, IIra of
degree ni,n9 > 1 respectively, satisfying the following estimates:

|| HTf_f ’lO,wT r-\<z h%1+1 | f |n1+17wT7 (43)

2+1
|| UT(I —a ||0;00wa :5 h;:’2+ | a |n2+1,oo,wT . (44)

We assume that ni,no are large enough and hr, VI' € T}, is small
enough so that the errors due to the approximation appearing in
inequalities (3.27), (3.38) can be made negligible with respect to the
global error estimator 7,,. For this topics we refer to [1], [12]. Then,
inequalities (3.27), (3.38) imply the following proposition.

Proposition 7 Under the above assumption on the data approzima-
tion, there exist two constants ¢ and C, dependent upon the constants
C' and C\, such that the following bounds for the true error in terms
of the global error estimator hold

1 _
¢ e sl Tl + ¥l < Clas+a)n, . (4.5)

The effectivity index [1]

. def ur
e.q. = (4.6)
a3 |7l + 12 llo

plays a fundamental role in the study of the equivalence relation
between the error estimator and the true error. We have the following
bounds for the inverse of the effectivity index

1 1 —

c— < — < C(az+a9). (4.7)

(073 €.1.
In the optimal situation the two bounds in (4.7) should be indepen-
dent of any mesh-size.
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5 Sensitiveness to the problem parameters

Due to the complexity of the definitions of the coefficients aws, a3 and
a5, we study a case of particular interest and we make all the consider-
ations for it. First of all we fix 2 = 1, Re > 1 and we recall Remark 1.
Moreover we assume A = 0 (67 = 0). We are interested in observ-
ing the behaviour of the coefficients g, a3 and as when Re becomes
very large and h becomes small. Under the previous hypotheses, it
is easy to get: ax = O(1), a3 = 0(1), a = O(VRe), a5 =
@) (\4/}% min{m, ﬁ}) . Hence, the double inequality (4.7) be-

comes
,Jﬁ} <Ll<z (5.1)

€.7

1 1
C —— Mmax < ——
~VRe { VRe
showing a moderate loss of robustness of our estimates when Re be-
comes very large.

The case with z = 0 and Re > 1 was considered in [3]. The
corresponding result in the current setting is

1

c

1 _

S

We note the improvement of robustness due to the presence of the
zero-order term.

Remark 3 The lower bound in (5.1) involves A, so it is not indepen-
dent of the mesh-size. This is a consequence of our definitions (3.31),
(3.34) and (3.37) for the quantities a2, o and o3. Another possibility
is to set af = @2, a2 = a2 (i.e., take the largest values independently

A2
. Q .
of any mesh-size) and a2 = =5 In this case we have
5

I—3C. (5.3)
€.1

1 1
Cc

$

This bound is independent of the mesh-size, but is less sharp than
(5.1) for high Reynolds numbers.

In the next subsections we want to perform some numerical inves-
tigations on the bounds of the estimates (4.5), (4.7).

5.1 The test problem

In order to test our error estimator we consider problem (2.1), (2.2)

in the unit box Q %/ (0,1)? with homogeneous boundary conditions.
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velocity field

0.9f

pressure

0.81

0.7

0.61

>0.5¢

0.4r

0.3r

0.2r

0.1r

L L V\"““w““’ y i
% 0.2 0.4 0.6 0.8 1 X

X

Figure 5.2. Exact solution: p
Figure 5.1. Exact solution: velocity
field

We define the vector field a = [ay, a2] as follows:

ai(z )dgf 1—cos el (1) sin 2 (1) By
HhY) = efr — 1 eftz — 1 27 (ef2—1)’

def . (2w (eRlx—l) 27 (6R2y—1) R, efuz
e N T A ey ) Pt ey
where R;, Ry are two strictly positive real parameters. With a suit-
able choice of f = [f1, fo], the solution [u,p] of the problem is

ul(xvy) = a'l(xvy)a
uz(z,y) = az(z,y),

7 (effrT — 7w (ef2y —
p(xay)=R1Rgsin<2 ( 1)> Sin<2 (e 1)>

efti — 1 eftz — 1

eRlxeRzy
X .
(e 1) (e 1)

The velocity field of this solution is similar to a counterclockwise vor-
tex in a unit-box (see Figures 5.1, 5.2). Playing with the parameters
R; and R, we can move the centre of this vortex that has coordi-

fﬁ%) and yp = RLZ log (M> Increasing Ry,

2
the centre goes rapidly towards the right-hand vertical side, whereas
increasing Ry it approaches the top edge.

Every numerical result that we shall present is obtained using con-
tinuous linear finite elements for both velocity and pressure. More-
over, every integral needed to set up the linear system is computed

nates zg = R% log (
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assuming ny = ne = 3 in (4.3), (4.4); this is achieved by computing
the integrals with suitable quadrature formulas on each triangle. A
quadrature formula of order 5 on each element is used for comput-
ing the norms in the true error. The parameter A appearing in the
stabilizing parameter 67 in (2.10) is set to 0.

5.2 Numerical results on uniform triangulations

We study how the effectivity index e.i., varies with respect to the
mesh-size and the Reynolds number on a uniform grid. In our test
problem we consider the forcing function that corresponds to the
solution which has the centre of the vortex on the horizontal line
yo = 0.5125 (R2 = 0.1) and the distance from the right-hand vertical
wall equal to W We report the behaviour of ay + as, ell , 0%6 on
uniform grids with respect to h = 4 in Figures 5.3, 5.5, 5.7 and with
respect to Re in Figures 5.4, 5.6, 5.8. We see that the dependence of
ﬁ on the Reynolds number is not far from a%; as expected for the
lower bound in (4.7). Figures 5.9, 5.10 show the direct comparison of
the upper bound as + as, of the lower bound ais with respect to ﬁ,
for the coarsest and the finest uniform grids we consider. The parallel

behaviour of LZ and L shown in these figures, confirm our opinion

that the asymptotic behav1our of ——, for Re becoming very large, is
close to the one predicted by the lower bound of (4.7). We note that
our estimates are not robust because the coefficients depend on the
Reynolds number, but we can say that they are sharp because for
our test problem the dependence of % upon Re is very close to the
dependence of a% upon the Reynolds number.

6 Comparisons with error estimators for
reaction-convection-diffusion problems

We like to apply the principles of our analysis to the reaction-convec-
tion-diffusion equation and compare the results so obtained to the
analogous ones derived in [20]. Here, we specialize the analysis of
Subsection 3.3 to the following problem

—P—Au—i—a Vu+zu=f, in Q, (6.1)
e

u=20 on 012, (6.2)
where Pe > 1 is the Péclet number; z € L*(Q); a [H

(Q)] n
o(l); f €

1
Lo(Q)2 with V-a = 0 in & [[all, = O(); |I2]l, = OQ); f
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L2(Q). The discrete model includes a SU PG stabilization [9] like for
the previous problems: Find up € Vy, such that Vv, € Vy,

Pe

1
+ ZTT ~ e Aup, + a -Vup, +zup, a-Vop,

TeT,

1
— (Vup, Vop) + (@ -Vup, vp) + (2up, vp)

T
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= (fron)+ D 7 (f,a-Von). (6.3)

TET
. de h2 . a hrPe
Following [9], we set 7 2] my—=Pe if 0 < mkHH°'+T 1,
de . a hrPe .
whereas 7p 2 W if mk””“% > 1 where my, is defined
oo, T

in Subsection 2.2. For the sake of simplicity, we do not consider any
approximation of the convective velocity a and of the function z.
Moreover the function f is not approximated for solving the problem.
We will consider an approximation of f only in the definition of the
element residual bubble function wp. This is to make comparisons
with [20] as easy and direct as possible.

Let us define our energy norm for the solution  on w C € in the
following manner:

Jul? e

w Pe

Remark 4 Definition (6.4) does not include any dependence on z, fol-

lowing [20] and differently from (2.6); this is justified by the assump-
tion || z ||, = O(1).

2 2
wli,+llullo, - (6.4)

Definition 8 Let us set
alygdéfmin{vPehg,l}, S=Te€T, ot S=FE€cg&,.

We give the definitions of the equation-residual Ry (up) and of the
stress-jump Jg(uy) for this reaction-convection-diffusion problem.

Definition 9

d 1
Ry, =) —P—eAUtha'Vthrzuh—UTf ;

T
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J def L Oup,
BhT Pe 0ag ],

Definition 10 Let us introduce the error indicator

def 9 1 9
e = ol Brallop+y Y eapVPe|Jpaloy- (65)
Ece(T)NErn

6.1 Global upper bound

Following the guidelines of Section 3.2, one gets the same upper
bound for the error as in [20]:

lun —ullag 3 [ D mhr+3 D Ao lldrf~flgy - (6.6)
TeTy T€ETh

6.2 Local lower bound

NI

Now following the same analysis of Subsection 3.3 applied to this
problem we find how ng 7 bounds the error from below.
Definition 11 Let us define for each T € Ty,
d 1
< ——+arlal

(8
2T Pe

Then we have the following proposition:

+hr | 2| (6.7)

O0,wT o0,w *

Proposition 8 The following local lower bound holds

oy,
N 3V Pe " i pllun — wll, +or,rheVPe |Irf = £ 113, - (6.8)

h
We define . o
C%,T I \/Pe hl—T aiT (6.9)
T

and we write the lower bound (6.8) as

nhr 3 Chrllun = ull, +avr hevPe| rf = flg,, - (6.10)
We compare this inequality with the equivalent one given in [20]

2 2
Mo 3 Cirllun = ulle, +of p | Irf = £ llgys (6.11)

where

d
Cor lef L+ anr|ally,, VPe+| 2] (6.12)

o0,wr *
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Figure 6.2. Cir and Cor versus Pe,

Figure 6.1. C;r and Cor versus hr, h 01
r=0.

Pe =100

Remark 5 Inequality (6.11) is obtained taking @ 4l min {7\/13% —, 1}
T

in the definition of the modified edge bubble function [20]. This choice
is done with the target to make the contribution of convection to the
loss of robustness (C2,7) as close to 1 as possible. If one does not apply
integration by parts in the proof of inequality (3.17) but simply takes

(@Y (up —w),wr)| < [l r VPelun —ullp [ wrllor

(and one proceeds similarly in proving inequalities (3.22)), then one
needs the modified cut-off bubble functions to get (6.11).

We consider the comparison between Cip and Cap very inter-
esting for analyzing the robustness of our estimates. The difference
between the two factors multiplying the term || IIpf — f ||gwa in the
two previous equations is less interesting; indeed, we assume to choose
the approximation II7f such that the data approximation terms are
negligible with respect to the error indicator.

It is easy to verify that

Cr 142l +Per  and  Cor <142y +Per,

where Per et | @|oo 4 b Pe is the local mesh-Péclet number.

Figures 6.1, 6.2 allow us to compare C;,r, Co,7 and 1+|| z ||OO,T+P€T.
We observe that our analysis leads to an estimate as sharp as the one
given in [20] even if we do not take advantage of the modified cut-off
functions. Furthermore, we note a slight improvement in the numer-
ical values of the coefficients.

Going back to the Oseen problem, we conclude that the estimates
derived in Subsections 3.2, 3.3 for the chosen energy-like norm of the
error in the velocity are qualitatively as sharp as the ones given in
[20] for the scalar reaction, convection and diffusion equation.
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7 Divergence-free projection

In order to discuss the sharpness of our estimate (3.18) with respect to
the error in pressure and the effect of the incompressibility constraint
alone, we propose to consider the following model problem, obtained
from our Oseen model by setting Re = 0o, a = (), # = 1 and enforcing
admissible boundary conditions:

u+Vp=f, in €, (7.1)
Vou=0  inQ, (7.2)
u-n =0, on 0f). (7.3)

The problem can be written in two different variational formulations.

To this end, we introduce the space Hy(div;?) = {v € [L2(Q)]2 :

V-v € L2(Q) and v-H = 0on 90} (see, e.g. [4], [10]), equipped with
1

2 2\ 2
the norm |[v |, = (w5 +1v-v[)*.

The first variational formulation of (7.1)-(7.3) we consider is the

closest one to the formulation used for the previous problems:
Find [u,p] € Hy(div;Q) x L3(Q) such that

(u,v) — (p,V-v) = (f,v), Vo € Hy(div;), (7.4)
(¢,V-u) =0, Vg e L3(). (7.5)

Note that u is precisely the orthogonal projection of f upon the closed
subspace of Hy(div;Q2) of the divergence-free vector fields. As usual,
p can be interpreted as the Lagrange multiplier associated with the
divergence-free constraint. The variational formulation (7.4), (7.5) is
also related to the mixed formulation of the Poisson problem for p
(see, e.g., [4], Chapter IV).
Problem (7.1)-(7.3) can also be formulated as follows:
Find [u,p]€ [L2(2)]? x [H(2) NLZ(Q)] such that

(u,0) + (Vp,0) = (f,0), VYove [LA9)]°, (7.6)
(Vq,u) =0, Vg € Hl(Q) N Lg(Q) .

Note that, here, the boundary condition (7.3) is enforced as a natural
boundary condition, implicitly in (7.7) after integration by parts of
(7.2).
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7.1 Well-posedness of the continuous problem

Well-posedness of problem (7.4), (7.5) follows from classical condi-
tions on saddle-point problems. Precisely, the bilinear form a(u,v) =
(u, ) is trivially coercive, with respect to the Hy(div;{2)-norm, on the
subspace K def {v € Ho(div;Q) : (¢, V-v) =0, Vg € L2(Q)}.

Here, we recall a Poincaré-Friedrichs inequality for zero mean
value functions:

lally 31 Vally, ¥ € HY(®) such that/quQ —0.  (78)

Moreover, we have the following lemma [10]:

Lemma 9 On the space Hy(div;Q) x LZ(€2), the bilinear form b(q,v) =
—(q, V - v) satisfies the following inf-sup condition

sup (qa V- 1))

1
> —lally,  VgeLj(). (7.9)
vero(div;o)\fo} 10 llgw — B

As a consequence, the solution of (7.4), (7.5) satisfies the estimate

Fullay + 12l NS Nlo- (7.10)

Remark 6 From equation (7.1), we get Vp = f —u € L?(Q), whence
p € HY(Q) with [[p]l; ZI1f llo-

We can easily get the well-posedness of problem (7.6), (7.7). In
fact, the bilinear form a(u,v) = (u,v) is trivially coercive on L%(Q).
Moreover the form b(q,v) = (Vq,v) trivially satisfies an in f-sup con-
dition on [L2(2)]” x[H!(2) NL2(€)], indeed

Vg,v
IValy= s OO (x.11)
veirz@voy 19 1lo
Finally, the solution of (7.6), (7.7) satisfies the estimate
lullo+ 1 Vel SNl (7.12)

7.2 Discretization and a priori estimates

Now we introduce a finite dimensional approximation of the varia-
tional problem (7.4), (7.5). Let Vj, C Ho(div;©2) and Q, C L3(9)
be finite dimensional subspaces of continuous piecewise polynomial
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functions on a triangulation 7. We consider the following stabilized
problem: Find [up,pp] € Vi, x Qp such that V[vp,qp) € Vi, X Qp,

(W, o) = (P, V- 0n) + Y 01 (V- up, V- vp)y = (M f,v),  (7.13)
TET

(an, V-un)+ > 7o (un+Vpn — Ipf,Vay)p =0, (7.14)
TET,

where 07 > 0 and 7 > 0 are stabilization parameters whose defini-
tion will be discussed below.

Remark 7 The present discrete formulation differs from the discrete
formulation given in [5]. Therein the authors assume to use a con-
tinuous subspace V;, C Hy(div;€2), but such that the couple Vj, Qp
of the discrete subspaces satisfy a discrete inf — sup condition. Do-
ing so they do not need the terms multiplied by 7 to circumvent
the Babuska-Brezzi condition. Moreover, they choose the parameter
dr = 1 to get the needed coercivity of the bilinear form ay(up,vy) =
(up,vp) +ETeTh dr (V- up, V-vp)p in the space V. Here we need
the terms multiplied by 77 to circumvent the discrete inf — sup con-
dition.

Remark 8 We will use continuous finite element spaces Vy, Qy,, so we
have V, C [LZ(Q)]2, Qpn C [HY(2) NL3(£2)] as well and thanks to the
boundary condition (7.3) the stabilized discretization (7.13), (7.14)
is also a discrete formulation of problem (7.6), (7.7).

7.2.1 Stability of the discrete stabilized problem In order to prove the
well-posedness of the stabilized discrete problem, we choose v;, = uy,
in (7.13), g, = pp in (7.14) and we sum the two equations, then we
apply the Cauchy-Schwarz and Young inequalities:

lunllo+ D or IV -unlor+ Y ol Vonlloz = (rf, un)

TeTh TeTh
1
= > 7 (un, Von)p+ Y e (o f, Vpy)p < o I Iz f [
TeTh TeT, !
k1 2 1 2 k2 2
+7 [ wn |lg + Z By | un, HO,T + Z 5T | Vo ||0,T
TeT, < TET,

1 ks
+ D s HInf o+ Y 5 | Venllor - (7.15)
TeTh 3 TeTy,
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Choosing k1 =ko :k3:% and assuming 7maa)_( T < %, we easily get
S

2 2
lun 5+ > o0V uwnllir+ > 7ol Vb,
TeTh TeTh

o 3 I fl; . (7.16)

Remark 9 We note that the stability condition of the discrete formu-
lation does not fix any upper bound for 77 dependent on the local
mesh-size hp differently from [8], [9]; here we have only an upper
constraint of the type max 7 = O(1).

TETy

. d d
Assumption 4 From now on we set mp 2] 7 and O 2] 0, VT € Tp.

Proposition 9 Assuming 7 < % the following uniform stability esti-
mate for the discrete formulation (7.13), (7.14) holds true

lun llg +8 11w g +7 | Vou [l 31 S g - (7.17)

Finally, if we consider e.g. 7 = % and either § = 0 or 6 = 1, we
write explicitly the uniform stability estimates | up, ||+ || Vo, lg 2
| £ Nl or [[un gy +19ps lo 3 | 12f llg, respectively. Then, by
standard arguments, a priori error estimates in the norms in which
stability is stated can be obtained.

7.8 A posteriori estimates

Here we want to investigate the robustness of an error estimator
very close to the error estimators used before, when we are using
different norms for the true error. For this reason, sometimes, we
switch between the two variational formulations of the continuous
problem (see Remark 8). Again, we deal separately with the velocity
error 7" and the pressure error ¥.

Let us define Ry def up +V pn — 7 flp.
Proposition 10 Under the assumptions of the continuous problems
(7.4)-(7.5), (7.6)-(7.7) and the discrete problem (7.13)-(7.14), there

exist a positive constant Cy such that, for each positive constant k1,
we have

1
171, < oy{ﬁ 1Vl v/Fr |V - un g

+ IS N Ren 2+ 1 I f=F g p - (7.18)
TeT
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Proof. From the continuous equation (7.4) we get
(T,'U) - (SP,V’U) = (uhav) - (ph,V"U) - (fav)a Vv e V. (719)

We take v = 7" as a test function and we proceed similarly to the proof
of Proposition 1, using the fact that p; and up are continuous func-
tions in Q, [0-7], =0, VE € 0 and -7 = 0 on 0N to conclude
that ZTeTh (7 ph, T) gy = 0. Moreover, we use Cauchy-Schwarz’s and
Young’s inequalities. Then, applying (7.8) we get (7.18). a

Proposition 11 Under the assumptions of the continuous problem
(7.6), (7.7) and the discrete problem (7.13), (7.14) we have

IV@llo <ITllo+, [ Y I Rea Iy + 1 Hrf=fllp-  (7.20)
TET,

Proof. From the inf-sup condition (7.11) and equation (7.6) we
have:

V,v
IVelo= sup Y
verLz@)\foy 117 lo

1
<|Tllgt  sup S > (Rep, 0)p (I f—f,v)
ezl v o | 47,

Then, we get (7.20). O

Definition 12 Let us define the residual-based a posteriori error es-
timator on the triangle T € Tp:

def 2 2
77?%,1’ = || Rr,n ||0,T IV un o7 (7.21)

Theorem 5 Under the assumptions of the continuous problems (7.4)-
(7.5), (7.6)-(7.7) and the discrete problem (7.13)-(7.14), there exists
a constant CT depending on the smallest angle of the triangulation
and independent of any mesh size such that the following global up-
per bound holds

17 Nlaiy + I V& llg < CT (g + I I f =1 [lo) - (7.22)

Proof. Using inequalities (7.18), (7.20) and suitably choosing the
constant ki, we get the global upper bound for the error 7" inde-
pendent of ¥. Then using inequality (7.20) we get the global upper
bound for the error ¥. Recalling the definition of the global error
estimator (4.2) and collecting the previous results, definition (7.21)
and |V T |, =1 V-unll, we get the thesis. O
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7.8.1 Local lower bounds As in Section 3.3, for T' € T}, let us define

Wy def Rt 5 br, where by is the usual bubble function on the triangle.

Proposition 12 Under the assumptions of the continuous problem
(7.1)-(7.8) and the discrete problem (7.13), (7.14) we have

I Repllozr SN Nloyr +% 1 o + M I f = f o0 (7.23)

and
I Rrnllor SN o + 1V @ Nl + I I f = F llor - (7.24)
Proof. First we use inequalities (3.14)-(3.16), then we observe that

(Rrpswr) = (Tywr)p — (O, V - wy)p — (7 f—f,wr)p . (7.25)

Then, from (3.16) we obtain (7.23). Applying an integration by parts
of the term (¥, V -wy) in (7.25), we get (7.24). O
Moreover we can show how the residual of the continuity equation

bounds from below the error for the velocity on 7" in the L2-norm.

def
[

We set wp = [V -up] by and we have

1
2
IV -up llgr SN Mo | Vwrllor 317 Mo r |V - wn o7

thus we find

1
IV -unlloz 3 5= 1T llor- (7.26)
T

Remark 10 If we want to control the error measured by one of the two
norms || V' |lo+||& ||, or |T|lo+| V&, we can apply the inverse
inequality (7.26) on each element 7'

Then, we recall definition (3.32) and we collect the previous results
in the following theorem:

Theorem 6 There exist four constants C| 1, C) o, C) 3 and C| 4 de-
pending on the smallest angle of the triangulation and independent of
any mesh size such that the global lower bounds holds

hng <CLa (N7 g+ 1% llg + A Trf—£ 1) 5 (7.27)
hng <Cro (1T Nl + 1@ lo+ B T f=f o), (7.28)
hng <Crs (1T lg + IV lg+ R T f-flly) (7.29)

Mo SCLalY gy + IV g+ I f=f1lo) - (7.30)



32 Stefano Berrone

7.4 Numerical results

In this section we use again the hypotheses of Section 4 about the
approximation of the data. From Theorems 5 and 6 we easily get
that measuring the true error by one of the norms || 7|, +| & ||,
N g + 1o or | Tl + V||, yields the bounds

ch < <C (7.31)

1
e.i.
for the inverse of the effectivity index.

. d
Instead, if we define the true error as t.e. =) |

then we have

|7 Mg 1V & llo,

<C. (7.32)

So, we have found the most appropriate norm for measuring the er-
ror in the solution of problem (7.1), (7.3), since it yields robust a
posterior: estimates.

In order to test our error estimators, we consider problem (7.1),
(7.2) in the unit square with boundary condition (7.3). We choose the
forcing function f = [f1, f2] such that the solution [u,p] of the prob-
lem is the same as the one described in Subsection 5.1. In this case we
fix Ry = Ry = 0.3. We consider two different grids: a structured uni-
form grid (Figure 7.1) and a quasi uniform unstructured grid (Figure
7.2). Finer grids are obtained splitting each triangle in four similar
triangles for both grids. In Figures 7.3-7.6 we report the behaviour of
1/e.i. versus h for the errors measured in the four norms considered
in the previous subsection. We consider both the stabilization cases
d =0and 6 =1 with 7 = 4/9. The numerical results confirm our
theoretical estimates. Indeed, if we measure the error in the norm
1Y lgiv + | V& ||y, the inverse of the effectivity index is always close
to 1 when & tends to 0. If we measure the error in any other norm
we always have, at least, one case for which the inverse of the effec-
tivity index tends to 0 when A tends to 0. Note that setting 6 = 0
the “good” norms are those that include the term || 7|, (see Fig-
ures 7.3, 7.4). Conversely setting 6 = 1 the “good” norms are those
that include the term | V& ||, (see Figures 7.5, 7.6).
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